
Adaptive agent abstractions to speed up spatial agent-based
simulations

Abbas Sarraf Shirazi a, Timothy Davison a, Sebastian von Mammen b, Jörg Denzinger a,
Christian Jacob a,c,⇑
a Dept. of Computer Science, Faculty of Science, University of Calgary, Canada
b Institut für Informatik, University of Augsburg, Germany
c Dept. of Biochemistry & Molecular Biology, Faculty of Medicine, University of Calgary, Canada

a r t i c l e i n f o

Article history:
Received 9 February 2013
Received in revised form 3 September 2013
Accepted 7 September 2013
Available online 24 October 2013

Keywords:
Agent-based simulation
Abstraction
Optimization
Online learning

a b s t r a c t

Simulating fine-grained agent-based models requires extensive computational resources.
In this article, we present an approach that reduces the number of agents by adaptively
abstracting groups of spatial agents into meta-agents that subsume individual behaviours
and physical forms. Particularly, groups of agents that have been clustering together for a
sufficiently long period of time are detected by observer agents and then abstracted into a
single meta-agent. Observers periodically test meta-agents to ensure their validity, as the
dynamics of the simulation may change to a point where the individual agents do not form
a cluster any more. An invalid meta-agent is removed from the simulation and subse-
quently, its subsumed individual agents will be put back in the simulation. The same mech-
anism can be applied on meta-agents thus creating adaptive abstraction hierarchies during
the course of a simulation. Experimental results on the simulation of the blood coagulation
process show that the proposed abstraction mechanism results in the same system behav-
iour while speeding up the simulation.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Agent Based Models (ABM) provide a natural means to describe complex systems, as agents and their properties have a
convenient mapping from the entities in real world systems. The interaction of agents in ABM gives rise to an interesting
concept in the study of complex systems: emergent phenomena, higher-level properties or behaviours that are not easily
traceable in the lower-level entities [1]. Moreover, ABM capture discontinuity in individual behaviours, which is difficult
when modelling with an alternative like differential equations [2].

The flexibility of ABM comes at a computational cost. As the granularity of a model increases, so do the computational
resources needed to simulate all of the interactions among the agents, which directly translates into longer simulation times.
Some researchers have restricted agent interactions to be only among neighbouring agents in a two or three-dimensional
lattice [3,4]. However, changing the interaction topography among agents is a necessary feature in some models, e.g. devel-
opmental processes [5]. Others have utilised parallel computing to meet the computational demands of ABM [6,7]. Finally,
many researchers have proposed super-individuals [8]: agents that encompass other agents, e.g. a single super red blood cell
agent that subsumes and represents thousands of individual red blood cell agents.

1569-190X/$ - see front matter � 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.simpat.2013.09.001

⇑ Corresponding author at: Department of Computer Science, University of Calgary, Calgary, AB T2N 1N4, Canada. Tel.: +1 4032207682.
E-mail addresses: asarrafs@ucalgary.ca (A. Sarraf Shirazi), tbdaviso@ucalgary.ca (T. Davison), sebastian.von.mammen@informatik.uni-augsburg.de

(S. von Mammen), denzinge@ucalgary.ca (J. Denzinger), cjacob@ucalgary.ca (C. Jacob).

Simulation Modelling Practice and Theory 40 (2014) 144–160

Contents lists available at ScienceDirect

Simulation Modelling Practice and Theory

journal homepage: www.elsevier .com/locate /s impat

http://crossmark.crossref.org/dialog/?doi=10.1016/j.simpat.2013.09.001&domain=pdf
http://dx.doi.org/10.1016/j.simpat.2013.09.001
mailto:asarrafs@ucalgary.ca
mailto:tbdaviso@ucalgary.ca
mailto:sebastian.von.mammen@informatik.uni-augsburg.de
mailto:denzinge@ucalgary.ca
mailto:cjacob@ucalgary.ca
http://dx.doi.org/10.1016/j.simpat.2013.09.001
http://www.sciencedirect.com/science/journal/1569190X
http://www.elsevier.com/locate/simpat


In this paper, we extend our previous work by proposing another type of abstraction that aims to build adaptive hierar-
chies of spatial agents during the course of the simulations. To this end, observer agents are immersed in the simulation to
monitor groups of agents. The observers try to detect a cluster of agents that have adhered to one another for a sufficiently
long duration of time. Once an observer finds such a cluster, it abstracts the agents into a single meta-agent that subsumes
both the behaviour and the structure of the individual agents in that cluster. As the dynamics of the simulation change,
groups of agents may no longer stick together and therefore the observer needs to break down those meta-agents into their
constituent individual agents. An unsupervised validation mechanism ensures the validity of meta-agents by periodically
monitoring whether they should continue to subsume their agents. Since meta-agents have the same basic definition as
the individual agents, the same abstraction process is applied on them, thus making adaptive abstraction hierarchies during
the course of the simulation.

The remainder of this paper is organised as follows. Section 2 reviews related works both in solving the problem of sca-
lability and in dealing with higher-order patterns in agent-based simulations. Section 3 gives a formal definition, along with
a computational timing analysis of our component-based agent framework – LINDSAY Composer. Section 4 presents our
abstraction framework with a detailed description of the involved steps and algorithms. We conclude this section with a
computational timing analysis of our abstraction. In order to demonstrate the effectiveness of this approach, we apply it
to an agent-based blood coagulation simulation and report the results in Section 5. Finally, Section 6 provides a comparison
between this work and our previous work, and presents the concluding remarks.

2. Related work

Agent based models operate at the individual level and describe potentially numerous behaviours for all of their constit-
uent units. Simulating all of the individual behaviours is therefore considered to be extremely computationally intensive
[2,9–12]. It has been suggested that abstracting higher-order patterns could reduce the computational complexity of ABM
without introducing much overhead [13,12,14]. In this section, we briefly describe the attempts made to address the prob-
lem of scalability and performance in ABM, then we review the works that motivated this research.

2.1. Scalability and performance in ABM

Bonabeau points out that despite increasing computational power, simulating all the individual behaviours in ABM still
remains a problem when it comes to modelling large-scale systems [2]. Research in improving the scalability of ABM is
roughly categorised into two groups: (1) parallel computing and (2) grouping similar agents into a single agent.

The first category, parallel computing, tries to concurrently simulate clusters of agents that interact primarily with one
another without much intra-cluster communication. Efficiency is improved as long as the time spent on synchronisation
is much less than the time spent on computation [6]. Scheutz and Schermerhorn developed a framework with two algo-
rithms for the automatic parallelization of ABM [6]. Particularly, they developed a separate algorithm for spatial agents,
as their location data can efficiently determine in what cluster they should be simulated.

Along the same line, Lysenko and D’Souza propose a framework to use Graphics Processing Units (GPU) to parallelize an
agent-based simulation [7]. They utilise a technique in General Purpose Computing on GPUs called state textures [15] to map
each agent to a pixel. A pixel is defined by its colour components: Red, Green, Blue, and Alpha (RGBA). Each numerical prop-
erty of an agent is thus mapped to a colour component. If an agent cannot be squeezed into four floating point values, then
extra colour buffers should be used, which in turn adds to the complexity of the problem.

The second category of grouping similar agents deals with the granularity of an agent. For example, super-individuals can
represent groups of agents. Scheffer et al. suggest assigning an extra variable to each agent to denote how many agents it
represents [8]. More advanced algorithms have been proposed to find super-individuals during the course of a simulation.
Stage et al. propose an algorithm called COMPRESS to aggregate a cluster of agents into one agent [16]. They divide their
algorithm into two stages to avoid applying a time-consuming clustering algorithm on the space of all the attributes in
all the agents. In the first stage, they calculate a linear combination of attributes li for each agent i by applying principal com-
ponent analysis (PCA) [17]. Then this list is sorted to find n clusters of agents with the largest gaps in li. In the next stage the
clusters are further subdivided based upon their variance until the variance is within a given range. The first stage maintains
overall system variations while the second stage reduces the intra-cluster variations.

COMPRESS is a static algorithm, in that once a cluster of agents is replaced by one agent, the original agents will not be
released back into the simulation. Wendel and Dibble extend the static COMPRESS algorithm with the Dynamic Agent
Compression (DAC) algorithm in which higher-order agents are created and destroyed based on the heterogeneity of
agents in the system [18]. They define two special agents in their system: (1) container agents which are the higher-order
agents and (2) a compression manager which handles all the queries to individual agents thus making the container agents
invisible to the model. It also creates and destroys other agents. For example, upon receiving a create request from the
model, the compression manager decides if it has to create a new individual or whether the create request can be ignored,
as there already exists an agent with the same attributes. In DAC, a container agent monitors its encompassed agents, and

A. Sarraf Shirazi et al. / Simulation Modelling Practice and Theory 40 (2014) 144–160 145



Download English Version:

https://daneshyari.com/en/article/492196

Download Persian Version:

https://daneshyari.com/article/492196

Daneshyari.com

https://daneshyari.com/en/article/492196
https://daneshyari.com/article/492196
https://daneshyari.com

