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a b s t r a c t 

A detailed analysis of the critical velocity of a uniformly moving load is carried out in this paper. It is 

assumed that the load is traversing an infinite beam supported by a finite depth foundation under plane 

strain condition. The problem is solved analytically in the Fourier domain, respecting two formulations 

of the interface condition. The critical velocity is determined as the velocity under which the undamped 

beam deflection tends to infinity, i.e. by identifying double poles in the Fourier image of the beam de- 

flection situated on the real Fourier variable axis. Results obtained are compared with the previously 

published results of this author, where simplifying assumptions were imposed on the shear contribution 

of the foundation. Based on the results, an addition to the previous formula for critical velocity estimate 

is proposed. It is confirmed that there are several critical velocities, but the lowest one, which is the 

dominating one, smoothly changes from the classical value to the lowest wave-velocity of propagation in 

the foundation according to the mass ratio defined as the square root of the fraction of the foundation 

mass to the beam mass. Particular situations, where the first double pole cannot be formed in this model, 

are discussed in detail. In such cases a significant increase of deflection is observed in the vicinity of the 

expected location, defining thus a pseudo-critical velocity. Attention is paid to the cases where there are 

two or more very close critical velocities, which causes an increased risk for practical applications. In 

addition, several options of damping are compared. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Response of rails to moving loads is still active field of sci- 

entific research and innovation. The simplest model of this kind 

is formed by a beam supported by an elastic foundation repre- 

sented by a uniform layer of springs. Two distinct interpretations 

are used, either the beam is modelled by the rail and the layer of 

springs represents the underlying remainder of the track structure, 

or an equivalent beam encompassing the whole track is defined 

and the spring layer stands for the foundation. In the former case 

the stiffness of the spring layer along the beam length is named as 

the track modulus. In both cases this approach defines Winkler’s 

model, which is often referred to as a “one-parameter model”. 

If the beam is infinite, then the critical velocity is defined as the 

load velocity which in an undamped situation originates beam in- 

finite displacements. The first solution of steady-state dynamic re- 

sponse of an infinite beam on an elastic foundation traversed by a 

moving force was presented by Timoshenko (1926) . In Frýba (1972 ) 

the moving coordinate system is introduced to convert the govern- 
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ing equation to ordinary differential equation that can be solved 

by the Fourier integral transform. Then the critical velocity is iden- 

tified as the velocity under which double pole (DP) in the Fourier 

image of the displacement is formed on the real Fourier variable 

axis. In Chen and Huang (20 0 0 ) the concept of the dynamic stiff- 

ness matrix is implemented. Two semi-infinite beams are solved 

for and connected by continuity equations. Then the critical veloc- 

ity can be determined as the velocity that ensures the nullity of 

the determinant of the dynamic stiffness matrix. Both approaches 

naturally give the same result, which for the Euler-Bernoulli beam 

is written as 

v cr = 

4 

√ 

4 kEI 

m 

2 
, v cr,N = v cr 

√ 

1 − ηN , ηN = 

N 

N cr 
, N cr = 2 

√ 

kEI (1) 

where v cr is the critical velocity and v cr,N is the critical velocity 

encompassing the effect of the normal force acting on the beam 

axis. EI, m and k stand for the bending stiffness and mass per unit 

length of the beam, and the stiffness of the foundation (Winkler’s 

constant), respectively. ηN is the normal force ratio, N is the normal 

force (considered positive when compressive) and N cr is the critical 

value of this force ensuring the existence of the critical velocity, 

i.e. preventing the beam of instability. The concept described above 
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was extended to finite and infinite beams with sudden change in 

foundation stiffness in Dimitrovová and Rodrigues (2012 ). 

Practical experience showed that the realistic critical velocity 

can be much lower than the one determined by the classical for- 

mula (1) , especially on soft soils ( Madshus and Kaynia, 20 0 0; Kay- 

nia et al., 20 0 0 ). This fact originated a significant research with 

the goal to improve the classical formula (1) . Possible generaliza- 

tions were mainly related to the foundation model. Two different 

directions have been followed. In one of them, the foundation was 

replaced by an elastic half-space. In this context, it is necessary 

to mention the pioneering works by Filippov (1961) and Lansing 

(1966) . The former one is addressing the problem of the critical 

velocity and the latter one belongs to the first works dealing with 

a moving load on an elastic half-space. In such a model it has been 

shown that the critical velocity of the moving load corresponds 

to the velocity of propagation of Rayleigh waves in the founda- 

tion ( Krylov et al., 20 0 0 ). Experimental evidence of such critical 

velocity is reported in Madshus and Kaynia (20 0 0 ) and Kaynia et 

al. (20 0 0 ). In Dieterman and Metrikine (1997 ) and Wolfert et al. 

(1997 ), it has been concluded that the problem is more compli- 

cated, and besides the Rayleigh-wave velocity, there is a critical 

velocity resulting from the dynamic interaction between the beam 

and the elastic half-space. 

Another direction related to the foundation model generaliza- 

tions, suggested improvements of the Winkler model ( Hetenyi, 

1946 ) by introduction of another parameter in so-called Filonenko–

Borodich or Pasternak models ( Pasternak, 1954 ). This parameter is 

introduced to account for the coupling effect of the Winkler lin- 

ear elastic springs, it represents the shear contribution and can 

equally be understood as distributed rotational spring. The model 

is named as a “two-parameter model”. Further improvements in- 

cluded a finite depth of the foundation. These models are named 

as the Vlasov and modified Vlasov models ( Vlasov et al., 1966; Val- 

labhan and Das, 1991 ). 

It is important to point out, that only finite active depth of the 

foundation soils can be included in the analysis. This depth can 

either be the actual depth at which a stiff substratum (rock) is 

located or a depth after which no appreciable soil deformations 

occur. Definition by a rigid base is a common approach in works 

that implement the Vlasov model ( Ozgan, 2013 ). Determination by 

detecting the depth where any soil deformations induced by the 

applied loads are negligible is presented for instance in Mednikov 

(1965 ). The dynamically active layer is deduced by fitting the exci- 

tation frequency at resonance, determined experimentally, with the 

lowest natural frequency corresponding to pressure wave caused 

by the applied pressure. Then this depth is used to define the 

Winkler and Pasternak parameters. Other works related to railway 

transportation predicts the active depth according to experimental 

measurements within the range of 4.5–8 m ( Li and Selig, 1995 ). 

Under assumption of finite depth, detailed analyses of in- 

duced vibrations by moving loads and of the critical velocities 

are presented in Metrikine and Vrouwenvelder (20 0 0 ) for two- 

dimensional problem and in Metrikine and Popp (20 0 0 ) in three- 

dimensions. It was demonstrated that the critical velocity is af- 

fected by the interaction between the beam and the founda- 

tion and therefore can differ from the velocity of propagation of 

Rayleigh waves. In agreement, in Náprstek and Fischer (2010 ) and 

Dimitrovová (2016 ) it was highlighted that the interaction between 

the beam and the foundation can be dominant. In Dimitrovová

(2016 ) only simplified plane models of the foundation were used 

for analyses of finite and infinite beams, but it was confirmed that 

the critical velocity is not given either by the classical value from 

Eq. (1) or by the lowest wave-velocity of propagation in the foun- 

dation, but there is a smooth transition between these two values 

governed by the mass ratio defined as the square root of the frac- 

tion of the foundation mass to the beam mass. For a lower mass 

ratio, the critical velocity approaches the classical formula (1) and 

for a higher mass ratio (approximately equal to 10), it approaches 

the lowest wave-velocity of propagation in the foundation. In this 

paper, generalizations that are consistent with the previous works 

are derived. Deductions are simplified by considering only a con- 

stant moving force, thus the analytical solution can be restricted 

to its steady-state part. It is shown that in full two-dimensional 

model, the final result depends on the interface condition between 

the beam and the foundation. However, differences between the 

three possibilities: the previously published results in Dimitrovová

(2016 ) and results according to two options for the interface condi- 

tion are quite similar. Namely, results with the interface condition 

in form of zero horizontal displacement (ZHD) yield values very 

similar to the simplified model from Dimitrovová (2016 ) and re- 

sults obeying the zero shear stress (ZSS) condition have the asymp- 

totic tendency to slightly lower velocity, approximately the veloc- 

ity of propagation of Rayleigh waves. In view of these new re- 

sults, an additional term to the previous formula from Dimitrovová

(2016 ) is proposed, accounting for this complementary wave prop- 

agation, caused by introduction of the horizontal displacements in 

the foundation. 

Particular situations, where the first DP cannot be formed in 

this model, are discussed in detail. In such cases a significant in- 

crease of deflection is observed in the vicinity of the expected loca- 

tion, defining thus a pseudo-critical velocity, typical for low shear 

ratios. Other situations, particularly dangerous in practical appli- 

cations, are cases with two or more very close critical velocities. 

These cases are also analysed in detail. In addition, several options 

of damping are compared. 

Thus the new contributions of this paper are: 

• Alternative resolution of the problem, which due to a conve- 

nient set of dimensionless parameters allows visualization of 

critical velocities related to practically all possible situations 

in one graph (readers can find in graphs the value they need, 

without recalculation of the expressions derived); 
• Detailed analysis of the critical velocity under two possible in- 

terface conditions: exact determination by identification of DPs; 
• New term to be added to the previously published formula for 

critical velocity estimate covering this extended situation (en- 

hanced formula for the critical velocity, readers can estimate by 

this formula the value they need, without recalculation of the 

expressions derived); 
• Definition and determination of pseudo-critical velocities (iden- 

tification of the limitations of the model analysed); 
• Identifying the cases with very close critical velocities; 
• Analysis of several damping models. 

There are apparently no recent works on this subject; two- 

dimensional analyses under plane strain condition with finite 

depth foundation and moving loads are given in Theodorakopoulos 

(2003 ) where Biot’s dynamic poroelastic properties are exploited 

but the beam is not include in the model; linear elastic solid is 

implemented by van Dalen et al. (2015) , but the focus of the pa- 

per is on the abrupt change in foundation stiffness and the beam 

is omitted in the model. Elastic half-plane is introduced in Ruta 

(2004 ). Other papers on three-dimensional analyses with finite 

depth media and analytical derivations like Besserer and Malis- 

chewsky (2004 ) are focused on different issues. Works directed to 

realistic simulations of rail transit are usually based on numerical 

resolution, implementing finite and/or boundary elements ( Galvín 

et al., 2010 ). Most papers that advance further with analytical res- 

olution are using foundation and elements underneath the rails as 

discrete springs and dampers, sometimes additional masses are in- 

cluded, but only in form of discrete concentrated elements, and 

therefore the wave propagation is somehow limited ( Sun, 2002 ; 
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