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a b s t r a c t 

In this study an elastoplastic hardening model for quasibrittle materials is presented. The yield surface 

exhibits hyperbolic meridians while its shape on the deviatoric plane is described by an elliptic func- 

tion. The proposed hardening mechanism is controlled by the slope of the asymptotes of the hyperbolic 

meridians and thus by the mobilized friction of the material. The yield surface is capped during the first 

stages of hardening and opens up before reaching the peak strength. On the deviatoric plane the harden- 

ing is non-uniform producing changes in both the size and the shape of the yield surface. The proposed 

plastic potential is related with the yield function through a simple modification of its volumetric part. 

The model is equipped with a hardening rule that is a monotonically increasing elliptic function of the 

hardening parameter. The latter is given in its rate form and it is pressure dependent. A proposed duc- 

tility rule controls this pressure dependency and leads to brittle behavior in tension and ductile behavior 

at high confinement compression. All the parameters have physical interpretation and are directly related 

with measurable mechanical properties of the material in the lab. Most of them could be identified from 

a uniaxial compression test. The predictions of the model are compared against experimental datasets 

and it is shown that exhibit very good agreement. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Quasibrittle materials, like rocks and concrete are granular ma- 

terials with cohesion and internal friction. In the tensile regime 

their mechanical response is nearly perfectly brittle. On the con- 

trary, in the compression regime they exhibit certain ductility 

which increases with the mean pressure. During low confinement 

compression the material initially hardens and then softens. More- 

over, a degradation of the elastic moduli is observed mainly in the 

softening regime. Additionally, the material exhibits some amount 

of plastic dilatation due to the propagation and coalescence of 

cracks. At high compression stresses, only compaction phenom- 

ena are observed and the material exhibits remarkable ductility 

with continuous hardening ( Jirásek and Bažant, 2002 ). Thus, the 

elastoplastic response of the quasibrittle materials is quite com- 

plicated and difficult to be modeled. To capture these phenomena 

two major approaches have been developed: models that incorpo- 

rate only the elastoplasticity theory and models that combine the 

elastoplasticity theory with damage mechanics. The first approach 

models both hardening and softening by controlling the evolution 

of the yield surface through appropriate hardening/softening rules. 
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The second approach usually models the hardening in the frame of 

elastoplasticity and considers perfect plasticity post-peak. The soft- 

ening response is modeled in the frame of damage mechanics the- 

ory. Nevertheless, both approaches are quite similar in modeling 

the pre-peak behavior. Concentrating the attention on the latter, 

key role in the development of hardening models plays the selec- 

tion of the yield surface, the hardening rule and the plastic poten- 

tial. 

Several yield surfaces have been proposed to model the me- 

chanical behavior of quasibrittle materials. One of the most used 

yield surface models is the Mohr–Coulomb ( Coulomb, 1776; Mohr, 

1900 ). Mohr–Coulomb is a simple two parameter model that pre- 

dicts a linear relationship between the normal and the shear 

stress during yielding/failure. The shape of the Mohr–Coulomb 

yield surface in the principal stress space is an irregular cone with 

three-fold symmetry. The meridians of the yield surface are lin- 

ear while its trace on the deviatoric plane is an irregular sym- 

metrical hexagon. Finally, its two parameters are directly related 

with the cohesion and internal friction of the material. The Mohr- 

Coulomb is simple and thus widely-used model; however, it has 

four main disadvantages: (a) it overestimates the tensile strength, 

(b) the yield surface is not smooth, (c) it does not consider the in- 

fluence of the intermediate principal stress which has a significant 

influence on the peak strength of the material (e.g. Mills and Zim- 

merman, 1970; Mogi, 1971; Takahashi and Koide, 1989 ) and (d) it 

is an open surface, thus hydrostatic or nearly hydrostatic compres- 
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sion loadings cannot be modeled ( Chen and Han, 1988; Jirásek and 

Bažant, 2002 ). To overcome the first disadvantage, Hoek and Brown 

(1980) and Hoek et al. (2002) proposed a two parameter model 

for rocks with parabolic meridians which is a variant of the origi- 

nal Leon (1935) model developed for concrete. Willam and Warnke 

(1974) proposed two variants of a yield surface model, namely, one 

with three parameters which has linear meridians and one with 

five parameters which has parabolic meridians. The trace of both 

models on the deviatoric plane is described by an elliptic func- 

tion and they both account for the influence of the intermediate 

principal stress. Pramono and Willam (1989) introduced a capped 

variant of the Leon model for concrete and later Etse and Willam 

(1994) combined the Pramono–Willam model with the elliptic 

function of the Willam–Warnke model to produce a smooth yield 

surface which degenerates to the Menétrey and Willam (1995) fail- 

ure surface. This yield surface has been exploited by many authors 

who successfully modeled quasibrittle materials (e.g. Grassl and 

Jirásek, 2006; Grassl et al., 2013; Kang, 1997; Kang and Willam, 

1999; Unteregger et al., 2015 ). Starting from the soil mechanics 

discipline, Kim and Lade (1984) and later Ewy (1999) proposed 

a variation of the Lade–Duncan model ( Lade and Duncan, 1975 ) 

in order to include the cohesion. The three parameter Kim–Lade 

model has curvilinear meridians while the simpler two parameter 

model by Ewy has linear meridians. Other worth mentioning pro- 

posed phenomenological yield surfaces are the capped three pa- 

rameter Bresler–Pister model ( Bresler and Pister, 1958 ) which is an 

extension of the Drucker–Prager model ( Drucker and Prager, 1952 ), 

the capped seven parameter Bigoni–Piccolroaz model ( Bigoni and 

Piccolroaz, 2004 ) and the van Eekelen model ( van Eekelen, 1980; 

Parisio et al., 2015 ) among others. 

The second important feature in modeling the mechanical be- 

havior of quasibrittle materials during hardening is the evolution 

of the yield surface. Rocks and concrete may exhibit elastoplastic 

behavior that depends on the stress path, as well as on the value 

of the mean pressure and the Lode angle. It has been observed 

that the accumulation of plastic deformation leads to a more brit- 

tle response at the low confinement regime. On the contrary, at 

high confinement pressures the material remains ductile ( Bažant 

et al., 1999; Caner and Bažant, 20 0 0 ). To model such a compli- 

cated behavior an appropriate pressure dependent hardening rule 

is required that controls the evolution of the yield surface. Some 

models targeting in a specific pressure regime frequently discard 

the pressure dependent ductility ( Sulem et al., 1999; Lubliner et al., 

1989; Lee and Fenves, 1998; Voyiadjis et al., 2008 ). Other models 

incorporate only the pressure dependence ( Etse and Willam, 1994; 

Pramono and Willam, 1989; Kang and Willam, 1999 ) or only the 

Lode angle dependence ( Lin et al., 1987 ). The more complicated 

models include the effect of both the confining pressure and the 

Lode angle ( Grassl and Jirásek, 2006; Grassl et al., 2013; Untereg- 

ger et al., 2015; Parisio et al., 2015; Paliwal et al., 2017 ). 

Finally, a hardening model must be supplemented by an appro- 

priate plastic potential for the flow rule. It is known that in the 

case of quasibrittle materials the associated flow rule over-predicts 

the plastic volumetric strains ( Chen and Han, 1988; Jirásek and 

Bažant, 2002 ). Therefore, a non-associated flow rule is preferable. 

There are several choices that can be adopted for the plastic po- 

tential function. However, in many cases a plastic potential that is 

derived as a volumetric modification of the yield function has been 

proposed (e.g. Pramono and Willam, 1989; Etse and Willam, 1994; 

Grassl and Jirásek, 2006; Paliwal et al., 2017; Mas and Chemenda, 

2015 ). 

In this work an elastoplastic hardening model for quasibrittle 

materials is presented, i.e. the model is restricted to the up to peak 

elastoplastic behavior. The yield surface is based on the hyper- 

bolic failure criterion recently proposed by Liolios and Exadaktylos 

(2013b ); 2013a ). The meridians of this yield surface in the principal 

stress space are hyperbolas, while its shape on the deviatoric plane 

is described by the elliptic function of the Willam–Warnke model. 

The surface is smooth and accounts for the influence of the inter- 

mediate principal stress, i.e. the strengthening of the material due 

to the support of the intermediate principal stress. The proposed 

hardening mechanism is controlled by the slope of the asymptotes 

of the hyperbolic meridians and thus by the mobilized friction of 

the material. The yield surface is initially capped and eventually 

it opens up at the side of hydrostatic compression before the peak. 

Hence, it may be used for the modeling of hydrostatic or nearly hy- 

drostatic compressive loadings. The expansion of the yield surface 

on the deviatoric plane is non uniform that is it changes both its 

size and its shape. The model predicts pressure dependent ductil- 

ity which leads to brittle behavior in the tensile regime and duc- 

tile behavior for high confinement stress fields. Furthermore, the 

model is supplemented with a plastic potential that is based on 

the yield surface. By assuming deviatoric normality, the volumet- 

ric parts of the plastic potential and the yield function are related 

through a simple expression. All the parameters of the model have 

physical interpretation and are directly related with measurable 

mechanical properties of the material in the lab. A single uniaxial 

compression test is required to calibrate almost all the parameters 

apart from two. These last two parameters require the calibration 

of the failure surface on a set of experiments or an ad-hoc esti- 

mation. Finally, the predictions of the model are compared against 

experimental datasets and exhibit very good agreement. 

2. Conventions and definitions 

In this study the sign convention used in engineering mechan- 

ics will be followed, that is the compression stresses will be con- 

sidered as negative and tensile stresses as positive quantities, re- 

spectively. Consequently, the strains that tend to compact the ma- 

terial will be considered to be negative. Moreover, it will be as- 

sumed that 

σ1 ≥ σ2 ≥ σ3 (1) 

where σi (i = 1 , 2 , 3) represent the principal stresses. 

The yield surface function will be presented as an expression of 

the octahedral stresses and the Lode angle. It may be recalled that 

the octahedral normal stress p , the octahedral shear stress T and 

the Lode angle θ are given by the following expressions 

p = 

1 

3 

I 1 (2) 

T = 

√ 
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3 

J 2 (3) 

cos 3 θ = 

3 

√ 
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J 3 

J 3 / 2 
2 
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where 

I 1 = σkk = σ1 + σ2 + σ3 (5) 

is the first invariant of the stress tensor. J 2 and J 3 are the second 

and third invariants of the stress deviator tensor s ij , respectively 

s i j = σi j − pδi j (6) 

J 2 = 

1 

2 

s i j s ji (7) 

J 3 = det s i j = 

1 

3 

s i j s jk s ki (8) 

with δi j = 1 if i = j and δi j = 0 if i � = j . 
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