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a b s t r a c t 

A state space solution is developed to analyze surface instability of cylindrical structures with Young’s 

modulus varying arbitrarily in the radial direction. By using the incremental theory for surface instability 

of elastic materials, the equilibrium equations for the incremental stress field from a fundamental state 

are derived for radially graded elastic cylinders subjected to an axial compression, which together with 

the boundary conditions constitute an eigenvalue problem. In the present work, a state space method 

is established to solve the eigenvalue problem and predict the critical condition for onset of surface in- 

stability. The state space solutions for three typical examples are presented and shown to be in good 

agreement with the numerical results by the finite element method, including the analytical solution for 

a thin cylindrical shell. In particular, a transition of the critical buckling mode for a soft cylinder cov- 

ered by a bilayer is illustrated clearly by the present method. In contrast to the finite element method, 

the state space method is a semi-analytical approach with higher computational efficiency for arbitrarily 

graded elastic cylinders, including layered structures. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Graded cylindrical structures widely exist in nature and engi- 

neering applications. On one hand, some biological organs, such as 

plant stems, human or animal blood vessels, and earthworm bod- 

ies, can be seen as elastic cylindrical structures with material prop- 

erties varying in the radial direction, in which the stiffer layer may 

provide effective support and/or protection for the other softer tis- 

sues. On the other hand, in many engineering structures, function- 

ally graded cylinders, thin-walled cylindrical shells filled with soft 

cores, and other similar components are often used in aerospace, 

nuclear reactor, chemical plant, and civil engineering ( Karam and 

Gibson, 1995a; Ye et al., 2011 ). Such components have advan- 

tages of corrosion resistance, high temperature resistance and/or 

light weight. When subjected to axial compression, the compres- 

sive stress inside the system may cause surface instability. For a 

cylinder used for bearing axial pressure, surface instability in gen- 

eral needs to be avoided. However, this phenomenon of surface 

instability has recently been exploited for a range of applications, 

e.g., sensors ( Schaffer et al., 20 0 0; Stafford et al., 2004 ), microflu- 

idic devices ( Beebe et al., 20 0 0; Sugiura et al., 2007 ), micro-optics 

( Harrison et al., 2004 ), active surfaces ( Tokarev and Minko, 2009 ), 

and soft electronics and actuators ( Yang et al., 2010; Rogers et al., 
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2010 ). Therefore, whether to use or to avoid surface instability, 

understanding the intrinsic mechanism of this phenomenon is of 

great importance. 

Creases and wrinkles are two types of surface instability pat- 

terns. The creasing instability often initiates on a homogeneous 

block of rubberlike elastic material with a large compressive strain 

( Biot, 1963; Gent and Cho, 1999; Tallinen et al., 2013 ); while wrin- 

kling instability readily occurs for a stiff skin on a compliant sub- 

strate, the critical strain can be much smaller ( Huang et al., 2005; 

Cao and Hutchinson, 2012 ), suitable for linear elastic analysis. For 

a graded elastic layer with stiffness decaying from the surface to 

the interior, wrinkling instability may also happen on the surface 

with a very small in-plane compressive strain ( Lee et al., 2008; Wu 

et al., 2014 ). In the past decades, most theoretical and experimen- 

tal studies have focused on elastic materials with a planar surface 

( Biot, 1963; Huang et al., 2005 ). Although the investigation for in- 

stability on a curved surface is a more complex problem, there 

have been some pioneering works on surface wrinkles in cylindri- 

cal shells with or without a soft core. By using the shallow shell 

theory, Koiter (1945, 2009 ) derived a classical solution for onset 

of wrinkling in a thin cylindrical shell under axial compression. 

Later, the wrinkling instability of a cylindrical shell with a soft 

core under axial compression and lateral pressure was considered 

by means of Donnell’s equations ( Seide, 1962 ). By re-analyzing the 

buckling of a thin cylindrical shell with a compliant core, Karam 

and Gibson (1995a, 1995b ) found that the buckling resistance of a 
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hollow cylindrical shell could be improved significantly by infill- 

ing a compliant elastic core, predicting that there is a great po- 

tential for bio-mimicking of natural structures in engineering. The 

same system was recently investigated by Arani et al. (2007) us- 

ing an energy method and they concluded that the application 

of an elastic core may increase elastic stability and significantly 

reduce the weight of cylindrical shells. To further determine the 

effect of the filled core thickness on the behavior of buckling, 

Ye et al. (2011) developed a simple formula by employing the 

Rayleigh–Ritz approximation to predict the critical buckling stress, 

where the core material can be stiffer or softer than the shell ma- 

terial. More recently, a theoretical analysis based on the nonlin- 

ear Donnell–Mushtari–Vlassov shell theory ( Novozhilov, 1959 ) was 

conducted by Zhao et al. (2014) for a cylindrical shell supported 

by a soft core subjected to axial compression, in which the sur- 

face wrinklings along the axial and circumferential directions are 

both analyzed. In these theoretical analyses for core-shell cylin- 

drical structures, the shell is often regarded to be very thin and 

the approximate theory associated with thin plates has been used 

frequently, which requires that the buckling wavelength be much 

larger than the thickness of the shell. If the shell is relatively thick 

and its material is inhomogeneous, the above approach would be 

no longer applicable. 

In this paper, we devote our effort on the critical condition for 

surface instability of radially graded elastic cylinders. We note that 

a similar eigenvalue problem was investigated by the finite ele- 

ment method for an elastic half space with graded material proper- 

ties ( Lee et al., 2008 ) and graded elastic cylinders ( Jia et al., 2014 ). 

A theoretical analysis was performed by Diab and Kim (2014) for a 

neo-Hookean elastic half space with a stiffness decaying exponen- 

tially from the surface to the bulk. Recently, a state space method 

was developed for surface instability of the elastic layers and hy- 

drogel layers with arbitrarily depth-wise graded material proper- 

ties ( Wu et al., 2014, 2017 ). The state space method was found to 

be computationally effective for the elastic materials with a pla- 

nar surface in comparison with the finite element method. In the 

present study, we extend the state space method for surface insta- 

bility of elastic cylinders with elastic modulus varying arbitrarily 

in the radial direction. 

2. Theory of surface instability for elastic cylinders 

In this section, we briefly review the incremental theory for sur- 

face instability of elastic materials in a Cartesian coordinate sys- 

tem ( Wu et al., 2014 ), and then present the governing equations 

under cylindrical coordinates by the coordinate transformation for 

the surface instability analysis of graded elastic cylinders. 

Consider an elastic cylindrical structure in the stress-free state 

with the inner radius A and the outer radius B as shown in 

Fig. 1 (a), where a Cartesian coordinate system is set up with the 

reference coordinates X 1 and X 2 at a cross-section, and X 3 along 

the axis of the cylinder. When the cylinder is subjected to an ax- 

ial compression, the compressive stress inside the system may give 

rise to instability on the inner and outer lateral surfaces. Prior to 

surface instability, the compressed cylinder is seen as in a funda- 

mental state ( Fig. 1 (b)), and the corresponding current coordinates 

are denoted as ( x 1 , x 2 , x 3 ). 

The material is assumed to be linear elastic with a quadratic 

strain energy function in terms of Green–Lagrange strain 

W = 

1 

2 

C IJKL E IJ E KL , (1) 

where E IJ = 

1 
2 ( F kI F kJ − δIJ ) , F kJ = ∂ x k / ∂ X J , δIJ is the Kronecker delta, 

and C IJKL is the elastic modulus. For an isotropic elastic cylinder 

with material properties varying in the radial direction, C IJKL is a 

function of X 1 and X 2 and possesses the isotropic symmetry. 

From the strain energy density function in Eq. (1) , we obtain 

the second Piola–Kirchhoff stress: 

S IJ = 

∂W 

∂ E IJ 
= C IJKL E KL , (2) 

and the first Piola–Kirchhoff stress (nominal stress): 

P iJ = 

∂W 

∂ F iJ 
= F iK S KJ . (3) 

Under axial compression, strain compatibility requires that the 

imposed axial nominal strain ε0 = F 33 − 1 is identical everywhere 

in the fundamental state. 

Next consider an incremental displacement �u i ( i = 1, 2, 3) 

from the fundamental state. The increments of the deformation 

gradient and the Green–Lagrange strain are 

�F kJ = F iJ �u k,i , (4) 

�E IJ = 

1 

2 

( F kI F iJ + F iI F kJ )�u k,i , (5) 

here and subsequently, the notation ( ) , j denotes differentiation 

with respect to x j in the fundamental state, accordingly, ( ) , J 
is differentiation with respect to X J in the reference state; the 

Einstein summation convention is implied over repeated indices 

unless noted otherwise. Correspondingly, the increments of the 

Piola–Kirchhoff stresses are 

�S IJ = C IJKL �E KL , (6) 

�P iJ = F iK �S KJ + S KJ �F iK . (7) 

Assuming the lateral surfaces of elastic cylindrical structures are 

traction free, the incremental stress field must satisfy the following 

equilibrium equation and boundary condition: 

�P iJ,J = ( F iK �S KJ + S KJ �F iK ) , J = 0 , (8) 

�P iJ · N J = ( F iK �S KJ + S KJ �F iK ) · N J = 0 , at 
√ 

X 

2 
1 

+ X 

2 
2 

= A and B, 

(9) 

where N J represents the direction cosine of the outer normal rela- 

tive to the coordinate X J . 

Assuming that the strain in the fundamental state is small so 

that F iK ≈ δiK and the reference coordinates could be replaced with 

the current coordinates, the increment of the first Piola–Kirchhoff

stress in Eq. (7) can be approximated as 

�P iJ ≈ �P i j ≈ C i jkl �u k,l + P k j �u i,k . (10) 

Thus the equilibrium equation (8) and the boundary condition 

(9) may be further expressed as 

( C i jkl �u k,l + P k j �u i,k ) , j = 0 , (11) 

( C i jkl �u k,l + P k j �u i,k ) · n j = 0 , at 
√ 

x 2 
1 

+ x 2 
2 

= a and b, (12) 

where n j is the direction cosine of the outer normal relative to the 

coordinate x j . Equations (11) and (12) are essentially identical to 

that in Lee et al. (2008) with the same assumptions of linear elas- 

ticity and small strain. 

To analyze surface instability for an elastic cylinder with mate- 

rial properties varying in the radial direction, the cylindrical coor- 

dinates are employed for this system in the fundamental state as 

shown in Fig. 1 (b) and (c) with the current coordinates r, θ , and z . 

For simplicity, in the present study we assume that only Young’s 

modulus varies in the radial direction whereas Poisson’s ratio is 

fixed as a constant, thus an axial symmetrical system is obtained 

with only one non-zero stress component P 33 everywhere in the 

Please cite this article as: L. Han et al., A state space solution for onset of surface instability of elastic cylinders with radially graded 

Young’s modulus, International Journal of Solids and Structures (2017), http://dx.doi.org/10.1016/j.ijsolstr.2017.07.025 

http://dx.doi.org/10.1016/j.ijsolstr.2017.07.025


Download English Version:

https://daneshyari.com/en/article/4922376

Download Persian Version:

https://daneshyari.com/article/4922376

Daneshyari.com

https://daneshyari.com/en/article/4922376
https://daneshyari.com/article/4922376
https://daneshyari.com

