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a b s t r a c t 

Spatial extent of dynamic end effects in an orthotropic semi-infinite strip is investigated within the 

framework of linear elastodynamic theory. Formulation of the dynamic response of a strip was utilized to 

examine the effect of frequency of excitation and constitutive properties of the strip on the upper bound 

on a region affected by end effects. Analysis included examination of materials spanning a wide range 

of material anisotropy. It was found that frequency has only marginal effect on the extent of dynamic 

end effects in materials with high degree of orthotropy up to the first cut off frequency. Extremely small 

extent of end effects was found in strips made of orthotropic material with fibers oriented perpendicular 

to longitudinal direction of a strip. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

End effects in beam-like and plate-like members are source for 

much concern to engineers of structures. That concern is especially 

troubling in structures made of composites and laminates (e.g., 

Horgan, 1982; Miller and Horgan, 1995a ; Horgan, 1996a ). The study 

of end effects is traditionally separated into static and dynamic end 

effects, commonly treated separately. Studies of the static end ef- 

fects in fibrous composites, associated with Saint Venant’s princi- 

ple (e.g., Horgan, 1972; Choi and Horgan, 1977; Horgan and Sim- 

monds, 1994 ), disclose high non-locality of these effects and are 

considered to be well understood (e.g., Miller and Horgan, 1995b; 

Horgan, 1996b and references therein). Dynamic end effects, on the 

other hand, deserved only sparse attention even within the classi- 

cal isotropic domain ( Karp and Durban, 2011 , 2013 ). Among these, 

only few examine end effects in composites. 

The extent of dynamic end effects in anisotropic cylinders 

was investigated by Huang and Dong, (1984) and in shells by 

Bhattacharayya and Vendhan, (1991) . Dynamic edge effects in lam- 

inated composite plates were studied by Dong and Huang, (1985) . 

These few studies provide an important contribution to the anal- 

ogy between the static and dynamic end effects. The possible ef- 

fect of end effects on natural frequency of vibration of a beam 

was investigated by Duva and Symmonds, (1991) . Study of that 

type does not refer explicitly to the spatial extent of end effects. 

Experimental study of dynamic end effects in orthotropic mate- 

rial in a context of structural health monitoring was performed by 

Gecht, (2014) . The results obtained revealed an increased penetra- 
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tion depth of dynamic end effects measurable using simple equip- 

ment. 

All these studies suggest that dynamic end effects in compos- 

ites have general similarity to the static end effects in these mate- 

rials. Yet, the complete understanding of the effect of frequency on 

the extent of end effect in conjunction with the effect of degree of 

orthotropy is still demanding. 

The purpose of the present study is to disclose the explicit ef- 

fect of the degree of orthotropy and frequency of the excitation 

on the extent of dynamic end effects. That study is related to the 

question of validity of Dynamic Saint Venant’s Principle (DSVP) in 

structures and might have implication to structural health monitor- 

ing (SHM). That aim is accomplished by considering the dynamic 

steady state response of a strip made of orthotropic material sub- 

jected to an unspecified harmonic end excitation while the strip 

is held in plane conditions. Elastic behavior of the material is as- 

sumed to be free of any viscous damping. Solution of that problem 

was obtained analytically within the framework of linear elastody- 

namics. 

Exact upper bound of the spatial decay distance (lowest decay 

rate) of dynamic end effects has been found for strips made of 

several structural orthotropic composites representing wide span 

of orthotropy levels. The dependence of that upper bound on fre- 

quency of excitation has been mapped exposing the underlying 

pattern of the combined material-frequency effect. Unexpectedly, 

spatial extent of end effects smaller than in an isotropic material 

by 30 percent has been found to characterize several materials. 

That low penetration depth is found to occur in highly orthotropic 

materials with fibers oriented 90 ° to the strip axis. 

Section 2 outlines formulation of the problem of an elastic 

waveguide with free lateral surfaces. That formulation leads to 
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frequency equation, solution of which, for several orthotropic ma- 

terials, is given in Section 3 . Discussion of the results is suggested 

in Section 4 , followed by concluding remarks in Section 5 . 

2. Formulation of the problem 

Consider a semi-infinite strip with a thickness 2 h made of ho- 

mogeneous, orthotropic, elastic material that occupies the region 

x ≥ 0, | y | ≤ h . Assume that the planes of material symmetry coin- 

cide with the strip axes, either being the fibers collinear with x 

axis making E xx = E LL or perpendicular to it with E xx = E TT . The strip 

can be held in plane strain (| z | → ∞ ) or plane stress (| z | << h ) con- 

ditions with z coordinate not active while the faces y = ± h, x ≥ 0 

are free of traction. We seek the dynamic response of the strip 

subjected to an unspecified harmonic excitation at the end x = 0 

with frequency ω as a parameter. 

Formulation of that problem of a semi-infinite strip under 

plane conditions made of orthotropic material, leading to fre- 

quency equations, can be found in several monographs and arti- 

cles (e.g., Buchwald, 1959; Auld, 1973; Solie and Auld, 1973; Rose, 

1999 ). That derivation is recapitulated here briefly adopting nota- 

tion used by Karp and Durban, (2005) . 

2.1. Dynamic response of a semi-infinite strip 

Dynamic response of a strip is governed by equation of motion 

∇ · σ = ρü (1) 

where σ is Cauchy stress tensor, ρ is the homogenized mass den- 

sity, ∇ is the gradient vector and u is the displacement vector 

which has two components 

u = u i + v j (2) 

for the two dimensional problem posed, where both components 

u, v depend only on x and y coordinates and time, t . Here i and j 

are the unit vectors in the x and y directions, respectively. 

For a plane problem, the linear constitutive relations are writ- 

ten in the form 

σx = S 11 ε x + S 12 ε y 

σy = S 21 ε x + S 22 ε y 

τxy = S 66 γxy (3) 

with strain components given by 

ε x = 

∂u 

∂x 
; ε y = 

∂v 
∂y 

; γxy = 

∂u 

∂y 
+ 

∂v 
∂x 

. (4) 

Substitution of (3) and (4) into (1) leads to equation of motion 

written in terms of displacements alone 

S 11 
∂ 2 u 

∂ x 2 
+ S 66 

∂ 2 u 

∂ y 2 
+ ( S 12 + S 66 ) 

∂ 2 v 
∂ x∂ y 

= ρ
∂ 2 u 

∂ t 2 

( S 12 + S 66 ) 
∂ 2 u 

∂ x∂ y 
+ S 66 

∂ 2 v 
∂ x 2 

+ S 22 
∂ 2 v 
∂ y 2 

= ρ
∂ 2 v 
∂ t 2 

(5) 

General solution of these two equations is given in the form of 

separation of variables 

u ( x, y, t ) = U ( y ) e i (ξx −ωt) (6) 

with transversal form of the wave 

U ( y ) = U x ( y ) i + U y ( y ) j 

Here ξ is the wave number, ω is circular frequency, and U ( y ) is 

the associated cross-sectional profile (wave mode) for both velocity 

components. Substitution of (6) into (5) leads to a system of two 

ordinary differential equations for U ( y ) 

−
(
ξ 2 S 11 − ρω 

2 
)
U x + S 66 U 

′′ 
x + ( S 12 + S 66 ) iξU 

′ 
y = 0 

( S 12 + S 66 ) iξU 

′ 
x −

(
ξ 2 S 66 − ρω 

2 
)
U y + S 22 U 

′′ 
y = 0 (7) 

where prime (’) denotes differentiation with respect to transversal 

coordinate y . 

The cross-sectional profile functions U ( y ) are determined from 

the combined requirement to satisfy Eq. (7) and boundary condi- 

tions of free surfaces 

σy = τxy = 0 (8) 

at y = ± h . That combination of requirements leads to frequency 

equation relating the wave number ξ to frequency ω. For the pur- 

pose of generality, these dimensional parameters will be replaced 

in the sequel by their non-dimensional counterparts defined by 

k ≡ 2 h 

π
ξ, � ≡ 2 h 

πC T 
ω. (9) 

where k and � are the non-dimensional wave number and fre- 

quency, respectively and C T is the shear phase velocity defined by 

C 2 T = 

S 66 
ρ . 

2.2. Frequency equation 

Assuming general solution for system of Eq. (7) in the form 

U x (y ) = A e i �ξy , U y (y ) = B e i �ξy (10) 

leads to characteristic equation 

S 22 S 66 �
4 − d �2 + 

(
S 11 − S 66 C 

2 
)
S 66 

(
1 − C 2 

)
= 0 (11) 

where 

d ≡ S 11 S 22 + S 2 66 − ( S 12 + S 66 ) 
2 − S 66 ( S 22 + S 66 ) C 

2 (12) 

with non-dimensional phase velocity C defined as 

C ≡ �

k 
(13) 

The two roots ( �1 , �2 ) of the characteristic Eq. (11) are given 

explicitly by 

�1 , 2 = 

√ √ √ √ 

d ±
√ 

d 2 − 4 S 22 S 
2 
66 

(
S 11 − S 66 C 2 

)(
1 − C 2 

)
2 S 22 S 66 

. (14) 

Due to symmetry of boundary data (8) , and in view of (14) , 

solution (10) can be separated into symmetric and antisymmetric 

fields, with symmetric part written in the form 

U x = A 1 η1 cosh 

(
�1 

πky 

2 h 

)
+ A 2 η2 cosh 

(
�2 

πky 

2 h 

)
(15a) 

U y = A 1 sinh 

(
�1 

πky 

2 h 

)
+ A 2 sinh 

(
�2 

πky 

2 h 

)
(15b) 

Here ( A 1 , A 2 ) are integration constants, and 

ηp = 

i 
(
S 22 �

2 
p − S 66 (1 − C 2 ) 

)
�p ( S 12 + S 66 ) 

p = 1 , 2 (16) 

The wave forms (15) should comply with boundary conditions 

on the long surfaces (8) . 

Applying free boundary conditions (8) leads to the transcenden- 

tal equation 

tanh 

(
�1 

πk 

2 

)
−

(
Q 1 

Q 2 

)±1 

tanh 

(
�2 

πk 

2 

)
= 0 (17) 
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