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a b s t r a c t 

A model for description of the creep response of porous cubic single crystal is presented. The plastic 

potential is obtained by specializing the orthotropic potential of Stewart and Cazacu (Int. J. Solids Struct., 

48, 357, 2011) to cubic symmetry. The crystal matrix material response is characterized by power law 

creep. The predictions of this porous plastic constitutive relation are presented for various values of stress 

triaxiality (mean normal stress divided by Mises effective stress) and various values of the Lode parameter 

L (a measure of the influence of the third invariant of the stress deviator). A strong influence of crystal 

orientation on the evolution of the creep strain and the porosity is predicted. For loadings along the 

< 100 > directions of the cubic crystal, void growth is not influenced by the value of the Lode parameter. 

However, for loadings such that the maximum principal stress is aligned with the [110] direction there is 

a strong influence of the values of the Lode parameter and the fastest rate of void growth occurs for shear 

loadings (one of the principal values of the applied stress deviator is zero). For loadings such that the 

maximum applied stress is along the [111] crystal direction the fastest rate of void growth corresponds 

to L = -1, while the slowest rate corresponds to L = 1. These predictions are compared with corresponding 

predictions of the three dimensional finite deformation unit cell analysis of Srivastava and Needleman 

(Mech. Mater., 90, 10, 2015). It is found that the phenomenological model predicts the same trends as 

the cell model calculations and, in some cases, gives good quantitative agreement. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

As is well-appreciated, porosity nucleation, growth and coa- 

lescence is the main mechanism of ductile fracture in structural 

metals. Porosity evolution can also play a role in determining the 

deformation response of structural metals and alloys in circum- 

stances where fracture is not a main concern but the overall defor- 

mation is, for example in deformation processing of sintered mate- 

rials. Therefore, a basic understanding of the evolution of porosity 

and its effect on the overall mechanical response is of widespread 

interest. In a wide range of circumstances, the voids of interest are 

of a size (say several microns and larger) where the surrounding 

material can be appropriately characterized by a continuum plas- 

ticity constitutive description. 

There is a long history of continuum based unit cell model 

calculations of void containing solids as well as of the devel- 

opment of phenomenological theories of porous plastic solids, 

see Tvergaard (1990) , Needleman et al. (1992) and Benzerga and 

Leblond (2010) for reviews with a focus on ductile fracture appli- 
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cations. Most of the constitutive relations that have been devel- 

oped for porous plastic solids have presumed that the surround- 

ing matrix material can be regarded as isotropic. There are cir- 

cumstances, however, where anisotropy of the matrix material may 

play a significant role, for example, for strongly textured polycrys- 

talline solids and where the void is embedded in a single crystal 

or is surrounded by a few crystals. Phenomenological anisotropic 

porous plastic flow potentials have been developed, for example, 

by Ahzi and Schoenfeld (1998); Benzerga and Besson (2001); Stew- 

art and Cazacu (2011); Morin et al. (2014); Paux et al. (2015) . 

Using rigorous limit-analysis theorems, Benzerga and Besson 

(2001) derived an analytic yield function for a porous material 

containing randomly distributed spherical voids in a matrix obey- 

ing Hill (1948) orthotropic criterion. Within the same framework, 

Monchiet et al. (2008) studied the case of ellipsoidal voids and 

derived a closed-form orthotropic plastic potential. The combined 

effects of anisotropy and tension-compression asymmetry induced 

by twinning or non-Schmid effects on the dilatational response 

of porous textured polycrystals was investigated by Stewart and 

Cazacu (2011) , Cazacu and Stewart (2013) . These authors analyti- 

cally solved a limit-analysis problem for the cases of spherical and 

cylindrical void geometries, respectively, and developed appropri- 

ate orthotropic plastic potentials. However, for the case of porous 
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single crystals analytical derivation of a plastic potential poses 

challenges that, at least to now, have been insurmountable. If the 

plastic deformation of the fully-dense single crystal is described 

using either a Bishop and Hill (1951) type model or the regularized 

form proposed by Arminjon (1991) with the exponent n � = 2, the 

plastic dissipation cannot be expressed in closed-form. Therefore, 

it is impossible to solve the limit-analysis problem analytically and 

derive a closed-form expression for the plastic potential. This was 

stated in Paux et al. (2015) , who proposed an ad-hoc modification 

of the Gurson (1975) isotropic yield function. 

An alternative approach to model the mechanical response of 

porous materials is based on the homogenization method devel- 

oped for non-linear composites by Ponte-Castaneda (see for exam- 

ple, Ponte Castaneda (2002) ). This method is based on the equiv- 

alence response of the solid under consideration with a linear- 

comparison composite solid described by a potential quadratic in 

stresses. It was applied by Idiart and Castaeda (2007) for the study 

of porous single crystals containing cylindrical voids subject to 

anti-plane loadings, and more recently by Mbiakop et al. (2015) for 

two-dimensional plane strain loadings. As pointed out by Mbiakop 

et al. (2015) , for anisotropic crystal plasticity based on a power- 

type law description with exponent n � = 2, no analytic solution 

exists even for hydrostatic loadings. Nevertheless, Mbiakop et al. 

(2015) were successful in obtaining numerical plastic potential sur- 

faces for various loadings. However, no results were reported for 

the time evolution of plastic strain or porosity under creep load- 

ing. For the case of a porous single-crystal with a matrix obeying 

a quadratic (i.e. n = 2 ) Bishop and Hill (1951) relation, Han et al. 

(2013) used the linear-comparison composite solid method to ob- 

tain an approximate analytical plastic potential that is quadratic 

in the components of stress. Han et al. (2013) also compared the 

model predictions with finite-element cell calculations for differ- 

ent crystal orientations. Three-dimensional cell model calculations 

exploring the effect of crystal induced anisotropy on the stress 

state dependence of porosity evolution were reported in Wan et al. 

(2005) ; Yu et al. (2010) ; Ha and Kim (2010) ; Yerra et al. (2010) ; 

Lebensohn and Cazacu (2012) ; Han et al. (2013) ; Srivastava and 

Needleman (2012, 2013, 2015) . 

Finite element modeling of the plastic deformation of single 

crystals for example fcc crystals requires accounting for slip on 

each of the twelve available slip systems. This additional compu- 

tational complexity limits the use of such a model in applications. 

In addition, although for a rate independent single crystal obey- 

ing a Schmid slip system relation the yield surface (and hence the 

flow potential) is faceted and has sharp corners, rate dependence 

rounds off the corners and gives rise to a smoother flow poten- 

tial surface when multiple slip systems are significantly active, Rice 

(1970) . 

The aim of this paper is to provide a simple phenomenolog- 

ical model for representing the creep response of porous cubic 

single-crystals. In particular, for simplicity and to keep the expres- 

sions close to those derived analytically from limit analysis, we ac- 

count for crystal anisotropy but not for the discreteness of slip sys- 

tems. The proposed phenomenological model is obtained by spe- 

cializing the orthotropic potential derived by Stewart and Cazacu 

(2011) to the case of cubic symmetry. To account for rate-effects, 

we use the approach proposed by Pan et al. (1983) . We compare 

the predictions of the proposed phenomenological model with the 

three dimensional single crystal unit cell results of Srivastava and 

Needleman (2015) . Their finite deformation finite element calcula- 

tions were carried out for an fcc single crystal containing a single 

initially spherical void. The deformation of the matrix was mod- 

eled by a crystal plasticity ( Asaro and Needleman, 1985 ) frame- 

work with a power law viscous creep relation for the matrix ma- 

terial. The unit cell was subject to creep loading, i.e. a fixed stress 

state, for a range of values of the imposed stress triaxiality, the ra- 

tio of the first to second stress invariants, and a range of imposed 

values of the Lode parameter, a measure of the third stress invari- 

ant. 

The results of Srivastava and Needleman (2015) showed a 

strong effect of anisotropy and stress state on the evolution of the 

overall creep strain and porosity. As expected, the predicted re- 

sponse was found to be sensitive to the value of the applied stress 

triaxiality. For the [100] crystal orientation that gives rise to nearly 

isotropic response, no effect of the Lode parameter on the dilata- 

tional response was observed. On the other hand, for anisotropic 

crystal orientations, a significant influence of the Lode parameter 

was found on the creep response of the porous crystals even at a 

high value of the stress triaxiality. 

In this paper, using the proposed phenomenological model the 

effect of crystal orientation is analyzed for various creep loading 

conditions. The model predictions for the overall creep response 

and for porosity evolution are compared with the corresponding 

cell model results of Srivastava and Needleman (2015) . Our analyt- 

ical results show a strong effect of crystal orientation and imposed 

stress state on the evolution of overall creep strain and of poros- 

ity. The two important distinction between the cell model calcula- 

tions and the simple phenomenological model are: (i) in the cell 

model calculations of Srivastava and Needleman (2015) the orien- 

tations of the slip systems evolve, whereas in the results based on 

the plastic potential of Stewart and Cazacu (2011) the anisotropy is 

fixed throughout the deformation history; (ii) the cell model cal- 

culations account for void-void interactions, whereas in the simple 

phenomenological model any such interactions are ignored. Never- 

theless, key features of the phenomenological predictions are con- 

sistent with those obtained from the cell model calculations. 

2. Formulation 

To describe the creep response of porous cubic single-crystals, 

we specialize the orthotropic plastic flow potential of Stewart and 

Cazacu (2011) to cubic symmetry. The plastic potential of Stewart 

and Cazacu (2011) is briefly described in Section 2.1 and a model 

for creep of porous crystals with cubic symmetry is proposed in 

Section 2.2 . 

2.1. The plastic potential for orthotropic porous solids of Stewart and 

Cazacu (2011) 

Stewart and Cazacu (2011) used a kinematic limit analysis ap- 

proach in conjunction with the Hill-Mandel lemma ( Hill, 1967; 

Mandel, 1972 ) to derive an analytical expression for the plastic 

potential of an orthotropic rate independent plastic solid contain- 

ing randomly distributed spherical voids. The plastic behavior of 

the matrix (void-free solid) was taken to be governed by a rela- 

tion that accounts for plastic tension-compression asymmetry but 

is pressure-insensitive, ( Cazacu et al. (2006) ). 

The Stewart and Cazacu (2011) plastic potential has the form 

φ
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where f is the void volume fraction (or porosity), k is a material 

parameter accounting for the tension-compression asymmetry in 

plastic deformation, σ T 
x is the uniaxial tensile yield strength along 

an axis of orthotropy, σm 

= tr 
(
σi j 

)
/ 3 and σ ij are Cartesian compo- 

nents of the Cauchy stress tensor. In Eq. (1) , ˜ σ1 , ˜ σ2 , ˜ σ3 are the 

principal values of the transformed stress tensor 

˜ σi j = κi jkl σ
′ 
kl (2) 
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