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a b s t r a c t 

Combining time-dependent structural loading with dynamic crack propagation is a problem that has been 

under consideration since the early days of fracture mechanics. Here we consider a method to deal with 

this issue, which combines a set-valued opening-rate-dependent cohesive law, a quasi-explicit solver and 

the eXtended Finite Element Method of representing a crack. The approach allows a propagating crack 

to be mesh-independent while also being dynamically informed through a quasi-explicit solver. Several 

well established experiments on glass (Homolite-100) and Polymethyl methacrylate (PMMA) are success- 

fully modelled and compared against existing analytical solutions and other approaches in 2D up until 

the experimentally observed branching speeds. The comparison highlights the robustness of ensuring en- 

ergy is conserved globally by treating a propagating phenomenological crack-tip implicitly, while taking 

advantage of the computational efficiency of treating the global dynamics explicitly. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

The kinetics of crack propagation is of considerable importance 

in a large variety of areas from predicting crack arrest length in 

engineering structures, earthquakes and bone fracture, to impact 

fragmentation protection in spacecraft and military armour. The 

majority of modelling approaches to date have assumed that the 

material response is independent of crack propagation ( Crump et 

al., 2017 ; Freund and Hutchinson, 1992 ; Meyers, 1994 ). This is 

equivalent to considering structures as time-independent continua 

subject to instantly applied changes in boundary conditions. In re- 

ality, materials behave differently at different length scales. This 

length-scale dependency ultimately leads to an element of dis- 

creetness at some material specific scale. The result is a delay in 

displacement propagation from application of boundary loading, to 

an incident point of interest, such as a crack tip. This is where the 

field of dynamic fracture mechanics aims to bridge the gap be- 

tween material (continuum) dynamics and crack propagation (an 

extension of a discontinuity) by considering dynamically-loaded 

cracks, inertia and rate-dependent material behaviour ( Freund and 

Hutchinson, 1992 ). 

The first analytical treatise of dynamic fracture was made by 

Mott, who amended the Griffith’s energy balance for a central 

crack in an infinite plate with the kinetic energy of a fracture 
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event. His modified expression for the strain energy release rate 

in an elastic continuum reads: 

G ( t ) = 

dF 

da 
− d U E 

da 
− d E k 

da 
, (1) 

where a is the crack length, F is the work done by external forces, 

U E is the elastic strain energy given by: 

U E = U E o −
πσ 2 a 2 B 

E 
, (2) 

and E K is the kinetic energy, given by: 

E k = 

1 

2 

k 2 ρa 2 ˙ a 2 
(
σ
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)2 
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In Eqs. (2) and ( 3 ), σ is the remotely applied stress normal to 

the crack, ρ and E are the density and Young’s modulus of the ma- 

terial, ˙ a is the crack speed, and k is the wave constant. From Eqs. 

(1) –( 3 ), Mott derived a time-dependent strain energy release rate 

( Mott, 1948 ): 
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[
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= 2� (4) 

where � is a constant specific surface fracture energy. When com- 

pared to a material parameter, i.e. critical strain energy release rate 

G c , Eq. (4) provides a criterion for crack stability: for G(t) < G c the 

crack will remain stationary, otherwise it will extend. This can be 

recast into a more familiar criterion based on comparison between 
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(time-dependent) stress intensity factor, K I (t), and plane stain frac- 

ture toughness K Ic , which is related to G c via: 

G c = K I c 
2 

(
1 − ν2 

E 

)
. (5) 

Eq. (4) is derived with two limiting assumptions: the crack trav- 

els at a steady-state speed; and this speed is small compared to 

the shear wave speed within the material. However, due to the in- 

creased kinetic energy, dynamic fracture can occur below this crit- 

ical limit for non-steady state speeds. Thus, K I can be seen as a 

function of the crack velocity, which may not exceed a limiting 

value – the Rayleigh surface wave speed c r . Kanninen and Popelar 

(1985 ) have shown that: 

˙ a = c r 

(
1 − K Ic 

K I 

)
(6) 

where ˙ a is the macro-crack speed. If K Ic is assumed a material 

constant, i.e. fracture toughness is assumed independent of strain 

rate, then Eq. (6) will stand up to quantitative comparison with 

experimental data at low propagating speeds. Through extensive 

experiments on Homolite-100 by Ravi-Chandar and Knauss (1984 ), 

it was observed that a propagating crack does not exceed ∼0.7 c r 
due to multiple yet not fully explained dynamic fracture features 

which dissipate the fracture energy beyond this limit. They also 

observed the crack propagation process for a fast brittle crack con- 

tained a large diffuse zone of micro-cracks ahead of the tip. This 

process produced an oscillating macro-crack profile, slowing down 

the crack, leading in some cases to macro-crack branching ( Ravi- 

Chandar and Knauss, 1984 ; Agwai et al., 2011 ). 

The assumptions used by Mott for deriving Eq. (4) allow for two 

possible scenarios for modelling dynamic fracture: 

• When a crack in a body subjected to a slowly varying load 

reaches a point of instability and propagates rapidly, leading to 

sudden unloading along a crack path. This is closer to a quasi- 

static situation, where the crack has a long time to dissipate 

energy relative to the fast propagation. 

• When a body with a stationary crack is subjected to a rapidly 

varying load such as an impact, giving rise to high stress lev- 

els near the crack tip. This high stress level does not allow 

sufficient time for plastic deformations to develop before frac- 

ture, hence, energy must be dissipated by other mechanisms, 

e.g. micro-cracking. Therefore, energy is released within a short 

time frame leading to rapid crack propagation, possible sub- 

branching and or, macro-crack branching. 

These two different scenarios have often been treated sepa- 

rately in fracture modelling due to the difficulty in integrating 

time-dependent and decaying discontinuities such as a crack in Fig. 

1 (a) into oscillating continuum systems under an external vibra- 

tory loading as in Fig. 1 (b). This is because the strain waves pro- 

duced by a propagating crack are often within the same order of 

magnitude as the global oscillating potential, making the resolu- 

tion of a propagating crack within a model numerically stiff. While 

the separation of these scenarios is useful for analytical treatments, 

in reality they may be realised simultaneously and there is no rea- 

son to keep them separate when dynamic fracture is modelled nu- 

merically. 

This paper offers a framework for numerical modelling of dy- 

namic fracture where both scenarios are taken into account. As a 

first application of the framework, the dynamic crack propagation 

is followed up until the crack branching point, which is defined 

by the limit presented by Eq. (6) . The post-branching behaviour 

is a subject of on-going work to be presented later. The devel- 

oped modelling approach ensures energy conservation by allow- 

ing the energy released during crack propagation to be resolved 

by the global system through a quasi-explicit solver and a velocity 

dependent cohesive law implemented via the eXtended Finite El- 

ement Method. The strategy is tested on two well-established ex- 

periments and discussed in relation to other available approaches 

to modelling dynamic fracture. The first experimental compari- 

son allows the crack to arrest before reflected strain waves inter- 

act. The second experimental comparison includes the interaction 

of reflected strain waves with the propagating crack, allowing for 

consideration of the effects of the interacting strain waves on a 

propagating crack. 

2. Modelling 

The proposed modelling approach has three components: 

1. An implicitly treated velocity dependent ‘phenomenological’ co- 

hesive law to represent the crack tip, implemented along the 

main crack path only. 

2. A quasi-explicit solver to resolve the crack globally ensuring en- 

ergy conservation. 

3. A propagation algorithm using the eXtended Finite Element 

Method (XFEM) to represent the crack independent of a mesh. 

The combination of these allows a propagating Fracture Pro- 

cess Zone (FPZ) to be integrated into a global continuum dynamic 

model and the energy from reflected waves to influence a prop- 

agating crack in an energetically conservative manner; effectively 

bypassing any numerical stiffness. 

2.1. Phenomenological rate dependent cohesive zone 

Cohesive zone models have been used in modelling dynamic 

fracture ( Falk et al., 2001 ; Ferté, 2014 ; Camacho and Ortiz, 1996 ; 

Xu and Needleman, 1994 ) however, when used at every element 

boundary, they often lead to different results, particularly when 

the cohesive law contains elastic branch prior to damage initi- 

ation. This is because, the initial elastic traction-separation be- 

haviour does not allow for resolving the cohesive zone without af- 

fecting the wave speed. To overcome this, Zhou et al. (2005 ) have 

suggested a more phenomenological crack-opening-rate-dependent 

cohesive law, which accounts for rate/velocity effects. This is in- 

troduced on the main crack path only, rather than for the micro- 

cracking process in the FPZ. The law has been derived from mul- 

tiple experimental observations, summarised in Fig. 2 . Specifically, 

irrespective of component geometry it has been observed that the 

dependence of Gc on the crack velocity, ˙ a 0 , is monotonically in- 

creasing and described with reasonable accuracy by a simple em- 

pirical expression ( Areias and Belytschko, 2005 ): 

G c ( ̇ a 0 ) = G 0 log 

(
˙ a L 

˙ a L − ˙ a 0 

)
, (7) 

where ˙ a L is the limiting crack velocity, and G 0 is the strain energy 

release rate at ˙ a 0 = 0 . The proposed equation is clearly an approx- 

imation to the real toughness–velocity relation at the two limits: 

Gc approached zero as crack velocity ˙ a 0 approaches zero (i.e. the 

material is very brittle compared to fast fracture); Gc approached 

infinity as crack velocity approaches the limiting value. The rapid 

increase of Gc with ˙ a 0 is explained with a velocity-toughening ef- 

fect of the material ( Tvergaard and Hutchinson, 1996 ). 

To avoid the problem introduced by initial elastic traction- 

separation behaviour, we have considered a initially rigid-softening 

behaviour, schematically shown in Fig. 3 , with toughness–velocity 

dependence based on Eq. (7) . Since the critical stress is assumed to 

be independent of crack velocity, the illustrated behaviour is called 

opening-rate-dependent cohesive law. A fracture process zone with 

this law has been previously used to study crack branching ( Crump 

et al., 2017 ). 
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