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a b s t r a c t 

A mathematical formulation is presented for the dynamic stress intensity factor (mode I) of a permeable 

penny-shaped crack subjected to a time-harmonic propagating longitudinal wave in an infinite poroelastic 

solid. In particular, the effect of the wave-induced fluid flow on the dynamic stress intensity factor is ana- 

lyzed. The Hankel integral transform technique in conjunction with Helmholtz potential theory is used to 

formulate the mixed boundary-value problem as dual integral equations in the frequency domain. Using 

appropriate transforms, the dual integral equations can be reduced to a Fredholm integral equation of the 

second kind. The phenomenon of fluid flow along the crack surface has significant influences upon the 

frequency-dependent behavior of the dynamic stress intensity factor. The stress intensity factor monoton- 

ically decreases with increasing frequency, declining the fastest when the crack radius and the slow wave 

wavelength are of the same order. Such near-field information is of particular importance in predicting 

the crack strength subjected to oscillating loads. The characteristic frequency at which the stress intensity 

factor decays the fastest shifts to higher frequency values when the crack radius decreases. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

During recent decades, modeling mechanical properties of ma- 

terials within the framework of poroelasticity has become increas- 

ingly important. This is mainly because many materials of prac- 

tical interest are porous ( Cheng, 2016 ) such as natural soils and 

rocks, and man-made concrete. Many studies have focused on the 

effects of wave-induced fluid flow (or fluid mass diffusion) due to 

the presence of mesoscopic cracks on elastic wave velocity disper- 

sion (e.g., Hudson, 1981; Chapman, 20 03; Brajanovski et al., 20 05; 

Kong et al., 2013 ) and reflectivity (e.g., Barbosa and Rubino, 2016 ) 

in fluid-filled poroelastic media. 

For the near-tip response of cracks in poroelastic solids sub- 

jected to dynamic loads previous investigations were restricted to 

impermeable cracks. Jin and Zhong (2002) determined the mode 

I dynamic stress intensity factor and obtained the solution for 

transient loads that were applied suddenly to the impermeable 

crack surface. Phurkhao (2013) investigated the mode I scattering 

problem but treated the case of an impermeable and traction-free 
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crack. In his study, the transport of fluid across the crack surface is 

prohibited, and there are no stresses acting on the surface. 

In contrast, we treat a permeable crack filled with an incom- 

pressible fluid. This paper analyses the dynamic stress intensity 

factor of a fluid-filled penny-shaped crack in an infinite porous 

medium when a plane, harmonic in time, longitudinal wave propa- 

gates perpendicularly to the surface of the crack. The analysis com- 

plements that of Galvin and Gurevich (2007) who investigated the 

effect of a permeable crack on the far-field scattering cross sec- 

tion at low frequencies. Because they were interested in the ef- 

fective properties of fractured media in a seismology context they 

restricted their analysis to mesoscopic cracks, and low frequencies. 

They only focused on the far-field behavior of the scattering due to 

the use of Waterman-Truell multiple scattering theory ( Waterman 

and Truell, 1961 ) to obtain effective medium properties. However, 

for a dynamic crack problem the far-field information is not use- 

ful in the sense that it offers no information for the development 

of the theories of crack propagation. In this study we use full- 

frequency Biot’s theory of poroelastodynamics to model the me- 

chanical behavior of the poroelastic material and investigate the 

near-tip field information. 

The equations for poroelasticity as given by Biot (1956) can 

be written in different equivalent formulations (e.g., Biot, 1962; 

Bonnet, 1987 ). Bonnet (1987) has shown that the governing equa- 
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tions of Biot’s poroelastodynamics can be expressed in the u −p , 

the displacement vector-pore fluid pressure, formulation without 

raising the order of the differential equations and that equations 

of poroelasicity and of thermoelasticity are mathematically equiv- 

alent in dynamic regime. In Biot (1962) the absolute fluid dis- 

placement vector U used in Biot (1956) is replaced by the relative 

fluid displacement vector w = φ( U −u ), where φ is the porosity. 

Deresiewicz and Skalak (1963) have shown that the normal com- 

ponent of the displacement vector w is continuous on an open- 

pore interface between two dissimilar porous solids. This is due to 

the conservation of mass of the liquid at the interface. The con- 

tinuity of the pore pressure is also required on the open-pore in- 

terface. This can be done with the aid of the constitutive equation 

(see Eq. (5) which relates the volumetric strain and increment of 

fluid content to the pore poressure). 

It is worth mentioning again that the u −p and u −w formu- 

lations are completely equivalent. To obtain the analytic solution 

of the wave scattering by a crack, we first apply the Helmholtz’s 

potential theory to decompose the displacement vector u ( Eq. (6) ). 

By introducing amplitude ratios of relative fluid displacement and 

solid displacement in corresponding wave modes it is easy to ex- 

press the relative fluid displacement vector w (see Eq. (7) ). How- 

ever, the u −p formulation drastically gives arise to the complexity 

of the mode decomposition making it be impractical to do analyt- 

ically for the scattering problem. Therefore, we adopt Biot (1962) ’s 

u −w formulation which has been widely used to investigate the 

scattering by inclusions ( Berryman, 1985; Gurevich et al., 1998; Liu 

et al., 2009 ) and wave propagation in layered structures ( Gurevich 

and Lopatnikov, 1995 ). 

The mathematical analysis of dynamic crack problems in a 

poroelastic solid usually follows the methods adopted for solving 

crack problems in the classical theory of elasticity. Sneddon and 

Lowengrub (1969) solved for the mode I stress distribution pro- 

duced in an infinite elastic solid when a constant pressure or free 

surface boundary condition is applied over the surface of a penny- 

shaped crack. They formulated the elastostatic problem as a mixed 

boundary value problem in a half space and derived an expression 

for the stress intensity factor. Robertson (1967) investigated mode 

I scattering of a plane harmonic longitudinal wave by a penny- 

shaped crack in an infinite elastic solid. He used the Hankel in- 

tegral transform approach to reduce the axisymmetric problem to 

dual integral equations and obtained an expression for the scat- 

tering cross-section. Mal (1968) solved the same wave problem to 

obtain an expression for the dynamic stress intensity factor. More- 

over, many attempts have been made to solve the crack dynamic 

problems such as radial shear waves (e.g., Sih and Loeber, 1969 ) 

and torsional vibration (e.g., Sih and Loeber, 1968; Mal, 1970 ), scat- 

tering associated with anisotropy (e.g. Kundu, 1990; Kundu and 

Boström, 1992 ), obliquely incident waves (e.g., Piau, 1979; Angel 

and Achenbach, 1985 ), and numerical approaches (e.g., Zhang and 

Gross, 1992 ). 

In this paper, we analytically study the elastic wave scattering 

by a fluid-filled crack in a poroelastic medium. In particular, the 

steady-state dynamic stress intensity factor is derived. The back- 

ground porous medium is assumed to be governed by Biot’s equa- 

tions of dynamic poroelasticity, while the mesoscopic crack is as- 

sumed to be much larger than the size of micropores. We assume 

that the thickness of the crack is much smaller than the wave- 

length of the incident longitudinal wave. To obtain the stress and 

pore pressure fields near the tip of a crack, the poroelastodynamics 

problem is solved by using the Hankel integral transform. There- 

after, the mixed-boundary value problem is reduced to a Fredholm 

integral equation of the second kind. As is shown in this paper the 

wave-induced fluid flow has a significant effect on the frequency- 

dependent behavior of the dynamic stress intensity factor. 

Fig. 1. Fluid-saturated penny-shaped crack in a poroelastic solid: Mode I problem. 

2. Problem formulation 

2.1. Equations of Biot’s porodynamics 

Consider an infinite isotropic, fluid-saturated poroelastic solid 

that is homogeneous except for a flat penny-shaped crack of ra- 

dius a . A cylindrical coordinate system ( r , θ , z ) with the origin at 

the center of the crack is introduced. The internal crack which is 

saturated by a fluid occupies the region z = 0, 0 ≤ r ≤ a . The prob- 

lem is to determine the scattering of an incident plane longitudi- 

nal wave, harmonic in time, propagating in the positive direction 

of the z -axis of a cylindrical coordinate system. The incident P- 

mode wave is a longitudinal wave of the first kind (also referred 

to as P1-wave) which is described by Biot’s theory of poroelasto- 

dynamics ( Biot, 1956 ). Fig. 1 illustrates a schematic diagram of the 

problem considered in this article. 

The time-harmonic factor e − i ωt , where ω is the circular fre- 

quency, is suppressed throughout. The equations of motion ex- 

pressed in the frequency domain are ( Biot, 1962 ) 

∇ · σ = −ω 

2 
(
ρu + ρ f w 

)
, (1) 

∇p = ω 

2 
(
ρ f u + ˜ ρw 

)
, (2) 

where σ and p are the total stress tensor and pore fluid pressure, 

the vector u is the solid displacement, the vector w represents the 

displacement of the fluid flowing relative to the solid but mea- 

sured in terms of volume per unit area of the bulk medium, ρ f 

is the pore fluid density. ρ = (1 −φ) ρs + φρ f is the density of the 

overall medium, where φ is the porosity, ρs is the solid density. 

˜ ρ = 

i η
ω κ(ω ) 

is the effective filtration density, where i = 

√ −1 , η is 

the dynamic viscosity of pore fluid, κ( ω) is the so-called dynamic 

permeability. According to Johnson et al., (1987) , the dynamic per- 

meability can be taken as static permeability κ0 multiplied by its 

frequency correction factor 

κ( ω ) = κ0 

[√ 

1 − i 
ω 

2 ω B 

− i 
ω 

ω B 

]−1 

, (3) 

where the frequency ω B = 

φη
κ0 α∞ 

ρ f 
is the so-called Biot critical fre- 

quency ( Biot, 1956 ) which separates the viscous-force dominated 

flow from the inertial-force-dominated flow, α∞ 

is the tortuosity. 

The constitutive relationships between the displacements and the 

stresses are ( Biot and Willis, 1957 ) 

σ = [ ( H − 2 μ) ∇ · u + C∇ · w ] I + μ
[∇u + ( ∇u ) 

T 
]
, (4) 

−p = C∇ · u + M∇ · w , (5) 
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