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a b s t r a c t 

In this paper, we develop a calculation method for determining the phonon or vibration spectra of lattices 

with defects. The dynamical matrices of lattices containing defects are calculated by introducing defects 

systematically into the dynamical matrices of pristine, defect-free lattices using linear operators. Each op- 

eration effectively modifies or removes an individual bond or mass. Then, complex defect configurations 

can be constructed through reiterative application of the operators. The proposed method may be applied 

to systems containing any interaction type or bond order, is amenable to parameterization with contin- 

uous variables, and is suited to the study of periodic structures and atomic lattices. For verification, the 

method is used to calculate the dilute limit in the optical mode of a point vacancy and the periodic-to- 

aperiodic convergence rate as a function of the increasing unit cell size. Additional demonstrations are 

then shown using two dimensional lattices containing a vacancy point defect and a tri-vacancy defect 

cluster. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Defects can significantly alter important properties such as fail- 

ure response, carrier mobilities, or vibration spectra of lattices 

across all length scales–nano, micro, or macroscopic. As a result, 

non-destructive defect detection ( Feldman et al., 1966; Nakashima 

et al., 2001; Ruiz et al., 2013 ) and defect design or phononics 

( Hussein et al., 2014 ), have become increasingly popular areas of 

study. However, across all systems that have a lattice basis and all 

types of defects that can exist in those lattices, there are an in- 

finite number of possible defect configurations. Yet few methods 

enable systematic investigation or offer a basis for design in an 

otherwise infinite parameter space. Namely, each model of a de- 

fect configuration is discrete and independent of other configura- 

tions, and subsequent study of variations in the configuration must 

be analyzed anew. Thus, while it is a straightforward matter of 

calculating, say, the phonon spectrum given the configuration and 

properties of a lattice, it can be quite challenging to determine the 

changes to eigenvalues, even from small perturbations or adjust- 

ments in configuration, due to the presence of a non-linear secu- 

lar equation. This paper describes an approach for relating defect 

variants to the same pristine reference lattice, thereby enabling the 

construction of dynamical matrices of defect configurations in a 
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continuously parameterizable way that is also amenable to com- 

puter implementation. 

This work relates to, and draws from, the enormous literature in 

the fields of both lattice and structural dynamics. The approaches 

for studying phonon behavior in complex material lattices at the 

atomic scale are not fundamentally different from those used to 

investigate the vibrational response of periodic structures ( Colquitt 

et al., 2011 ), or material micro-structure analyses ( Hutchinson and 

Fleck, 2006 ). A primary reason for this is in the use of the har- 

monic approximation in atomic lattices which essentially makes 

the problems analogous. Even when atomic lattices contain bond- 

order effects and long-range non-bonded interactions that are usu- 

ally absent in macroscopic structures, analogous pair and/or many- 

body interactions and internal couples could be used in the latter 

to emulate such effects. Thus an approach that quantifies the ef- 

fects of defects in vibration spectra is applicable to both atomic as 

well as engineered lattices. 

Analytical tools for quantifying the effect of defects on phonon 

spectra of atomic lattices originate from the Green’s function-based 

techniques initially proposed by Montroll and Potts (1955) . Their 

method calculates the localized changes in frequency due to point 

defects. Recognizing the r −1 exp (−Ar) decay of the effect of point 

defects at large distances, they developed a Green’s function-based 

technique to study single defects and defect pairs in 1D chains 

with extended arguments for 3D lattices. Lifshitz and Kosevich 

(1966) developed a more expansive approach, enabling the calcu- 

lation of both local modes as well as continuous mode changes 
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of the bulk spectra due to point, line, and planar defects. Each of 

these articles helped to create a rigorous, physical understanding 

of the modal properties of defective lattices. However, both rely on 

Green’s functions which make extensions to complex lattice struc- 

tures challenging. More recently, Grimm and Wagner (1994) ex- 

panded the Lifshitz formalism of Lifšic (1956) , to calculate the ef- 

fect of densely populated 1D defects on the thermodynamic prop- 

erties of 3D crystalline materials. Grimm and Wagner’s methods 

increased the efficiency of Lifshitz formulae by defining ‘meso- 

scopic’ coordinates, effectively reducing the rank of the tensors. 

The proposed method increased the breadth and computability of 

the Lifshitz formalism, but continued to utilize Green’s functions 

for calculations, the exact forms of which may be challenging to 

determine for arbitrary and general complex geometries, and the 

derivation of the approach assumed central force, pair potentials. 

In studies of the static behaviors of lattices ( Tewary, 1973 ; Migoni 

et al., 1980; Thomson and Zhou, 1994; Yang and Tewary, 2005 ) 

unique Green’s function have been developed for point defects and 

surfaces in the myriad combinations involving lattice types. 

With the advent of “smart” materials, and an increase in com- 

putational power, several works ( Theocharis et al., 2009; Boech- 

ler et al., 2011; Nolde et al., 2011 ) analyzed the effects of periodic 

lattice parameters on the vibrational response of macro-level sys- 

tems. Theocharis et al. (2009) developed a systematic continuum- 

level method for analyzing the stability of localized modes in gran- 

ular crystals. They studied continuum-scale grains and developed 

simple matrices to manipulate the pristine system into one con- 

taining defective grains of dissimilar masses, radii, or elastic mod- 

uli. The matrix equations were derived to include anharmonic ef- 

fects, assuming 1D chains of uniform grains interacting only with 

their nearest neighbors. Later work by Boechler et al. (2010) ex- 

panded the theory to include diatomic granular crystals. Nolde 

et al. (2011) developed a methodology for examining the vibra- 

tional modes of materials with non-homogeneous micro-structure. 

The chosen geometry was a 2D square lattice composed of non- 

homogeneous elastic strings. By employing lattice dynamics, the 

authors were able to calculate the changes in high frequency 

modes as the elastic constants of the strings varied, whereas prior 

continuum-level approaches were only accurate for wavelengths 

larger than the micro-structure of the material. Similarly, Chen 

et al. (2004) demonstrated that continuum-level approaches could 

be used to calculate the optical regime of material phonon spectra 

only when coupled with Micromorphic theory, which accounts for 

the micro-structure of the material. Other works on elastic bod- 

ies have examined the consequences of singular perturbations on 

eigenvalues ( Maz’ya et al., 2016 ) and localized waves in layered 

media with composite defects ( Andrianov et al., 2014 ). 

In this work we propose a general approach for modeling de- 

fects in any system that can be modeled as a periodic lattice or 

periodic structure. In traditional lattice dynamics, the dynamical 

matrix is obtained from a fixed lattice configuration. The dynam- 

ical matrices of defect lattices are mapped to the dynamical ma- 

trix of a pristine reference lattice. Traditional lattice dynamic cal- 

culations or finite element methods can be used to generate the 

matrix for the pristine, defect-free lattices. Then simple, sparse op- 

erators can be applied reiteratively to “build” defects of complex 

arrangements into the pristine structure. Thus a clear relationship 

exists between each defect configuration and its pristine lattice 

and, therefore, each defect configuration to each other. The system- 

atic approach avoids having to repeatedly re-calculate dynamical 

matrices and thereby allows simple and efficient parametric study 

of the effects of defect configurations. In a manner of speaking, 

this also enables a computable framework for the Lifshitz formal- 

ism ( Lifšic, 1956 ) and an extension to the theory of Montroll and 

Potts (1955) that avoids the use of Green’s functions. At present, 

we adopt the assumption of no relaxation in the neighborhood of 

the defect, as also employed in the atomic models of Montroll and 

Potts (1955) ; Lifshitz and Kosevich (1966) , and Grimm and Wagner 

(1994) , and periodic structures such as Theocharis et al. (2009) ; 

Hutchinson and Fleck (2006) , and Nolde et al. (2011) . 

The paper is organized as follows. In Section 2 the opera- 

tor method is derived for defects in atomic systems with cen- 

tral or non-central forces as well as progressive damage in peri- 

odic structures. The explicit form of the operators are then de- 

rived for central force potentials in Section 3 , and the calcula- 

tion approach is demonstrated to recover the solution of Montroll 

and Potts (1955) in Section 4.1 . In particular, through the parame- 

terization afforded by the method, we numerically determine the 

critical exponent for finite scale effects caused by defect interac- 

tions. The formulae are then applied to 2D rectangular lattices in 

Section 4 for examples containing an atomic point defect, a struc- 

tural truss defect, and an atomic tri-vacancy. Then, the conclusions 

are drawn in Section 5 . 

2. Methodology 

The present developments are intended to be applicable to both 

periodic structures and material lattices. For the sake of this gen- 

erality, the terminology we use presently is nodes and interactions. 

Thus a node may be either a feature of a finite element mesh or an 

atom, while an interaction may be from the interactions between 

atoms or through the structural interactions between two material 

points. In this section, we will first briefly overview the main idea 

for defect operators and then provide details in Sections 3 . 

Consider an n -dimensional lattice. The lattice is composed from 

a space-filling periodic unit cell containing N nodes. The vibration 

or phonon spectrum of the lattice ( ω ∈ R 

nN for stable systems, or 

ω ∈ C 

nN for unstable systems) can be computed through the eigen- 

value problem 

ω = 

(
Eigen v alues ( M 

−1 D ) 
)1 / 2 

(1) 

where D ∈ C 

nN×nN is the dynamical matrix, M ∈ R 

nN×nN is the mass 

matrix, and the square root is taken over individual terms in the 

column vector. Here, the mass matrix can be composed of point or 

continuous masses. The dynamical matrix contains all information 

about geometric and kinematic relations between nodes. 

Our problem statement is as follows: Find A ∈ C 

nN×nN and B ∈ 

R 

nN×nN such that the spectrum of the defective lattice can be di- 

rectly computed from the pristine system through 

ω d = 

(
Eigen v alues 

(
B M 

−1 
p ( A D p ) 

))1 / 2 
(2) 

The script “p ” is used to indicate quantities associated with the 

pristine lattice, and “d ” the defective lattice. A and B may be in- 

terpreted as operators that map the pristine dynamical and mass 

matrices into their respective “defect space”. 

The main point is that although A and B are not the same from 

one defect to another, we show that they can be assembled us- 

ing fundamental interactions that do not differ from one defect to 

another. Consider a pristine lattice that has an additively decom- 

posable potential energy function, E p , such that 

E p = 

∑ 

i 

E p i (3) 

where each E p i is the energy associated with a single interaction 

(be it one, two, or many-bodied) and the sum is taken over every 

individual interaction in the system. Each potential energy term 

may be an atomic interaction, or any finite element discretization 

of elasticity between two or more nodes (e.g. truss, beam, plate, 

etc). 

The dynamical matrix is the Fourier transform of the second 

derivative of the potential energy with respect to state variables. 
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