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a b s t r a c t 

The Discrete Equivalent Wing Crack Damage (DEWCD) model formulated in this paper couples micro- 

mechanics and Continuum Damage Mechanics (CDM) principles. At the scale of the Representative 

Elementary Volume (REV), damage is obtained by integrating crack densities over the unit sphere, 

which represents all possible crack plane orientations. The unit sphere is discretized into 42 integra- 

tion points. The damage yield criterion is expressed at the microscopic scale: if a crack is in ten- 

sion, crack growth is controlled by a mode I fracture mechanics criterion; if a crack is in compres- 

sion, the shear stress that applies at its faces is projected on the directions considered in the numer- 

ical integration scheme, and cracks perpendicular to these projected force components grow according 

to a mode I fracture mechanics criterion. The projection of shear stresses into a set of tensile forces 

allows predicting the occurrence of wing cracks at the tips of pre-existing defects. We assume that 

all of the resulting mode I cracks do not interact, and we adopt a dilute homogenization scheme. A 

hardening law is introduced to account for subcritical crack propagation, and non-associated flow rules 

are adopted for damage and irreversible strains induced by residual crack displacements after unload- 

ing. The DEWCD model depends on only 6 constitutive parameters which all have a sound physical 

meaning and can be determined by direct measurements in the laboratory. The DEWCD model is cal- 

ibrated and validated against triaxial compression tests performed on Bakken Shale. In order to high- 

light the advantages of the DEWCD model over previous anisotropic damage models proposed for rocks, 

we simulated: (a) A uniaxial tension followed by unloading and reloading in compression; and (b) Uni- 

axial compression loading cycles of increasing amplitude. We compared the results obtained with the 

DEWCD model with those obtained with a micro-mechanical model and with a CDM model, both cal- 

ibrated against the same experimental dataset as the DEWCD model. The three models predict a non 

linear-stress/strain relationship and damage-induced anisotropy. The micro-mechanical model can capture 

unilateral effects. The CDM model can capture the occurrence of irreversible strains. The DEWCD model 

can capture both unilateral effects and irreversible strains. In addition, the DEWCD model can predict 

the apparent increase of strength and ductility in compression when the confinement increases and the 

increasing hysteresis on unloading-reloading paths as damage increases. The DEWCD model is the only 

of the three models tested that provides realistic values of yield stress and strength in tension and com- 

pression. This is a significant advancement in the theoretical modeling of brittle solids. Future work will 

be devoted to the prediction of crack coalescence and to the modeling of the material response with 

interacting micro-cracks. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

In most brittle materials such as rocks, concrete and ceramic 

composites, mechanical failure is the result of a sequence of cou- 

pled micro-processes. In Continuum Damage Mechanics (CDM), 

anisotropic damage is usually represented by second-order ten- 

sors ( Murakami, 1988; Halm and Dragon, 1996 ) or fourth-order 
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tensors ( Ju, 1989 ) that depend on the density and orientation of 

families of micro-cracks. The expression of the damaged stiffness 

tensor is based on the principle of strain or energy equivalence 

( Murakami, 2012 ), and stress/strain relationships are deduced from 

the thermodynamic relationships that are derived from the en- 

ergy potentials. The damage flow rule, combined with the consis- 

tency condition, allows determining the evolution of the magni- 

tude and direction of micro-cracks ( Simo and Ju, 1987; Chaboche, 

1993; Hayakawa and Murakami, 1997 ). CDM models were imple- 

mented in Finite Element Methods (FEM) for practical engineer- 
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ing purposes (e.g., Jin et al. (2015) ; Xu and Arson (2015) ; Jin et al. 

(2016) ) and were successfully used to predict damage-induced 

anisotropy and confinement-induced strengthening in rock subject 

to compression (e.g., Shao and Rudnicki (20 0 0) ; Shao et al. (20 05) ; 

2006 )), as well as unilateral effects (e.g., Chaboche (1993) ; Dragon 

et al. (20 0 0) ). However, multiple non-linear damage phenomena 

require more constitutive parameters that are often not related 

to any microstructure or mechanical property, which raises cali- 

bration challenges ( Halm and Dragon, 1996; 1998; Arson, 2014 ). 

Moreover, difficulties arise when distinguishing tension and com- 

pression: either the stress or the strain tensor has to be split into 

positive and negative components. Damage evolution depends on 

distinct yield criteria and damage potentials ( Lubarda et al., 1994; 

Frémond and Nedjar, 1996; Comi and Perego, 2001; Zhu and Arson, 

2013 ). These so called bi-dissipative models are based on complex 

mathematical formulations (challenging to implement in FEM) and 

depend on a large number of parameters (challenging to calibrate). 

In micromechanical models, a direct relationship is established be- 

tween the macroscopic mechanical behavior and micro-crack initi- 

ation, propagation, opening, closure and frictional sliding. In the di- 

lute crack scheme, the calculation of the displacement jump across 

crack faces ( Budiansky and O’connell, 1976 ) is used as a basis to 

upscale the effective properties of the damaged REV ( Kachanov, 

1992; 1993 ) and to express the corresponding energy potentials 

( Kachanov, 1982a; 1982b; Pensée et al., 2002; Pensee and Kondo, 

2003 ). The evolution law is based on fracture mechanics and can 

represent Mode I splitting ( Krajcinovic et al., 1991; Gambarotta and 

Lagomarsino, 1993 ), Mode II friction sliding ( Gambarotta and Lago- 

marsino, 1993 ) or mixed Mode wing crack development ( Kachanov, 

1982b; Nemat-Nasser and Obata, 1988 ). In order to account for 

crack interactions, one can explicitly express the stress field that 

results from external loading and crack interaction ( Paliwal and 

Ramesh, 2008 ). Other upscaling techniques (e.g., Zhu et al. (2008) ; 

2009 ); Zhu and Shao (2015) ; Qi et al. (2016a ); 2016b )) resort to 

Eshelby homogenization procedure ( Eshelby, 1957 ), in which the 

cracked solid is viewed as a matrix-inclusion system ( Dormieux 

et al., 2006 ). Micromechanical formulations automatically predict 

unilateral effects but usually cannot capture the inelastic defor- 

mation together with the softening that characterize the REV be- 

havior after the peak of stress, and they require computation- 

ally intensive resolution algorithms. In this paper, we formulate 

an anisotropic damage model that couples micro-mechanical crack 

propagation criteria and CDM energy principles with a minimum 

number of constitutive parameters. In Section 2 , we present the 

theoretical formulation of our model, called the Discrete Equiva- 

lent Wing Crack based Damage model (DEWCD). A finite number 

of orientations is used to project the normal and tangential crack 

displacement vectors. The damage variable is a second-order crack 

density tensor, and the irreversible deformation is the crack open- 

ing vector averaged over all possible crack orientations. In tension, 

cracks propagate in mode I in the direction normal to the ten- 

sile stress. In compression, wing cracks propagate in mode I in 

the direction of the minimum deviatoric stress. We calibrate and 

validate the DEWCD model against triaxial compression data ob- 

tained on Middle Bakken shale. In Section 3 , we use the same ex- 

perimental dataset to calibrate a phenomenological damage model, 

the Differential-Stress Induced Damage (DSID) model ( Xu and Ar- 

son, 2014; 2015 ) and a micromechanical damage model ( Pensée 

et al., 2002; Pensee and Kondo, 2003 ). We simulate: (1) A uniaxial 

tension followed by unloading and uniaxial compression; and (2) 

Two loading-unloading cycles of uniaxial compression of increasing 

amplitude. We compare the performance of the three models for 

capturing damage-induced anisotropy of stiffness, unilateral effects 

in compression, damage hysteresis during unloading-reloading cy- 

cles, damage-induced irreversible strains, confinement-dependent 

strength, and differences of behavior in tension and compression. 

2. Theoretical formulation of the discrete equivalent wing 

crack damage (DEWCD) model 

2.1. Micromechanics-based free enthalpy 

We formulate a CDM model in which the expression of the free 

enthalpy is obtained from micromechanics principles. In the fol- 

lowing, we consider a REV of volume �r and external boundary 

∂�r , in which a large number of penny shaped microscopic cracks 

of various orientations are embedded in an isotropic linear elas- 

tic matrix of compliance tensor S 0 . Each microscopic crack is char- 

acterized by its normal direction 

−→ 

n and its radius a , which is at 

least 100 times smaller than the REV size. Opposite crack faces are 

noted ω 

+ and ω 

−, with normal vectors 
−→ 

n + and 

−→ 

n −. The displace- 

ment jump is noted: 

[ 
−→ 

u ] = 

−→ 

u 

+ − −→ 

u 

− (1) 

Where 
−→ 

u + (respectively 
−→ 

u −) denotes the displacement vector at 

face ω 

+ (respectively ω 

−). We consider a uniform stress field σ ap- 

plied at the boundary ∂�r . The displacement field at the REV scale 

is calculated by superposition, by adding up the displacement field 

in the elastic matrix in the absence of cracks and the displacement 

field induced by the opening and sliding of micro-crack faces. 

We assume that the mechanical interaction between cracks is 

negligible and we use a dilute homogenization scheme to calculate 

the crack displacement jumps. As a result, the average micro stress 

is equal to the stress field applied to the REV, so that we have: 

σ = 

1 

| �r | 
∫ 
�r 

[ σm (x ) + σc (x )] d x (2) 

In which σc is the stress field that is applied at micro-crack faces 

and σm is the stress field in the linear elastic matrix. Moreover, the 

local stress at crack faces is self-equilibrating, so that: 

1 

| �r | 
∫ 
�r 

σc (x ) d x = 0 (3) 

And therefore: 

σ = 〈 σm 〉 (4) 

The strain tensor in the matrix is obtained as follows: 

εm = S 0 : σ. (5) 

Each micro-crack can be considered as a single crack embedded 

in an infinite elastic homogeneous matrix, which allows calculat- 

ing the displacement jumps from fracture mechanics principles 

( Horii and Nemat-Nasser, 1983; Kachanov et al., 2013 ). Consider- 

ing a penny shaped crack of radius a subjected to a uniformly dis- 

tributed normal stress p at its faces and embedded in an infinite 

elastic medium with Young’s modulus E 0 and Poisson’s ratio ν0 , 

the normal displacement jump is: 

[ u n ] = 8 

1 − ν2 
0 

πE 0 
p 
√ 

a 2 − r 2 (6) 

The corresponding average Crack Opening Displacement (COD) is 

therefore: 〈 
[ u n ] 

〉 
= 

16 

3 

1 − ν2 
0 

πE 0 
pa (7) 

Similarly, considering a penny shaped crack of radius a subjected 

to a uniformly distributed shear stress 
−→ τ at its faces and embed- 

ded in an infinite elastic medium with Young’s modulus E 0 and 

Poisson’s ratio ν0 , the shear displacement jump is expressed as 

( Kachanov et al., 2013 ): 〈 
[ 
−→ 

u t ] 

〉 
= 

32 

3 

1 − ν2 
0 

(2 − ν0 ) πE 0 

−→ τ a (8) 
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