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a b s t r a c t 

The effective elastic properties of nano-structures are shown to be strongly size-dependent. In this paper, 

using a three dimensional strong nonlocal elasticity, we have presented a formulation to capture the 

size-dependent behavior of plate structures as a function of their thickness. This paper discusses some 

new aspects of employing a three dimensional nonlocal formulation for analysis of plates, namely, the 

confining of the nonlocal kernel in the near-boundary regions at the two surfaces of the plate. To address 

this aspect, we have studied two different types of nonlocal kernels, one bounded in a finite domain of 

the structure and the other, non-bounded. This study shows that the influence of the plate’s thickness 

on its bending stiffness can be captured within the nonlocal elasticity framework, and this influence 

highly depends on the bounding of the nonlocal kernel. Particularly, for a uniformly deformed plate with 

a homogeneous isotropic material, using the nonlocal formulation with the bounded domain reflects the 

physics of the problem better. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Micro and nano electro-mechanical-systems (MEMS and NEMS) 

play key roles in a wide variety of modern applications, including 

nano-mechanical sensors, actuators, and many electronic devices. 

The performance of these devices is based on movements and de- 

formations of their micro/nano mechanical components, such as 

cantilevers, double clamped beams or plates. Obviously, the further 

development of these devices requires a thorough understanding 

and modeling of their mechanical behavior. However, devices at 

nano-meter scale may exhibit mechanical properties not noticed at 

the macro-scale. Many theoretical methods such as molecular and 

atomistic simulations and size-dependent continuum theories are 

being developed to analyze this behavior. Molecular and atomistic 

simulations are generally time consuming and computationally ex- 

pensive. Alternatively, continuum models offer superior computa- 

tional efficiency. 

Classical continuum mechanics is size independent and it can- 

not provide a good prediction for small scales. Therefore, size- 

dependent continuum theories have been introduced to account 

for these scaling effects ( Eringen, 2002; Kröner, 1967 ). In an at- 

tempt to account for atomistic effects, these theories embed an 

internal material length scale. This makes it possible to qualify 
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the size of a structure as “large” or “small” relative to its mate- 

rial length scale ( Eringen, 2002; Angela Pisano and Fuschi, 2003; 

Eringen, 1977 ). If “large”, then these theories should converge to 

classical continuum theory, and, otherwise, they should reflect the 

size-dependence. 

One of the best-known size-dependent continuum theories is 

non-local continuum theory, initiated in a general notation by Pi- 

ola in 1846 ( dell’Isola et al., 2014; Dell’Isola et al., 2016 ). In non- 

local continuum theory, a material point is influenced by the state 

of all points of the body. The mathematical description of this the- 

ory relies on the introduction of additional contributions in terms 

of “gradients” or “integrals” of the strain field in the constitutive 

equations. This, respectively, leads to so-called “weak” or “strong”

non-local models ( Di Paola et al., 2013; Engelbrecht and Braun, 

1998; Silling and Lehoucq, 2010 ). Although both models have been 

found to be largely equivalent ( Peerlings et al., 2001 ), the weak 

(gradient) formulation requires stronger continuity on the displace- 

ments gradients. In addition, in cases that a well-defined spatial 

interaction exists in the material, the strong (integral) approach is 

preferred, because it models the nonlocality in a more transparent 

way ( Peerlings et al., 2001 ). 

In strong nonlocal theories, particularly formulated by Kröner in 

1967 ( Kröner, 1967 ), and then by Eringen in 1977 ( Eringen, 1977; 

2002 ), the point-to-point relationship between stresses and strains 

does not hold anymore. Instead, the stress in each point is influ- 

enced by the strain of all points of the body. This influence is cap- 

tured by a spacial integral over the body. The integral is weighted 
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with a decaying kernel, which is designed to incorporate the long- 

range interaction between atoms in the continuum model. With 

the spacial integral, the dimensions of the body are brought into 

the constitutive equations, and thus, the constitutive equations will 

be size-dependent. 

It is worth to mention here that closely related to strong 

nonlocal theory, the peridynamics theory has been developed by 

Silling and Lehoucq (2010) . In fact, in peridynamics, instead of spa- 

tial differential operators, integration over differences of the dis- 

placement field is used to describe the existing, possibly nonlinear, 

forces between particles of the solid body ( Silling and Lehoucq, 

2010; Weckner et al., 2009 ). However, in contrast to the peridy- 

namic theory, the strong nonlocal theories rely on spatial integra- 

tions. The present study mainly focuses on the commonly used 

strong formulation given by Eringen. 

The strong nonlocal theory has been used in many studies 

for modeling micro- or nano-mechanical devices. In these stud- 

ies, mechanical components such as thin-film elements and plate- 

like structures have been modeled with so-called two-dimensional 

non-local formulations, also known as “nonlocal plate theories”

( Eringen, 1984; Lu et al., 20 07a; 20 07b ). In these theories, the 

plate-like structures are generally modeled as a two-dimensional 

domain. In this way, the nonlocal contribution of the strain field 

in the transverse direction is ignored. Therefore, the size of a plate 

is only defined by its lateral dimensions, and thus, its thickness is 

not incorporated in its size-dependent behavior. 

In plane stress problems, which are inherently two 

dimensional—such as the stress analysis near the crack tip in 

a thin plate ( Eringen, 1977 )— ignoring the nonlocal effects in 

transverse direction is within reason. Also, for structures whose 

thickness is much smaller than the material length-scale, such as 

a monolayer graphene, the non-local effect in transverse direction 

is in fact meaningless ( Duan et al., 2007 ). However, modeling a 

plate as a two-dimensional domain and ignoring the nonlocal 

contribution in the transverse direction is not always valid. First 

of all, from a physical point of view, a nonlocal theory is supposed 

to incorporate the interaction between atoms in a continuum 

model and so its effect should exist in all directions ( Picu, 2002 ). 

Second, since the thickness of a plate is significantly smaller than 

its lateral dimensions, the length scale at which classical elasticity 

breaks down appears in the transverse direction first. Moreover, in 

problems in which there is a uniform strain field in the tangential 

directions, the nonlocal stress as a function of weighted average 

of strain in tangential directions is simply equal to the classical 

stress. This means the two-dimensional formulation fails to reflect 

any size-dependency. In such a case, it is likely that transverse 

non-locality would have a more pronounced size-dependence 

contribution. 

In this paper, we particularly investigate how the strong three 

dimensional nonlocal formulation can incorporate the plate thick- 

ness. Moreover, we study the effect of thickness in the predicted 

size dependence of the overall flexural rigidity and elastic modu- 

lus of the plate. 

It is worth to note that in nonlocal elasticity, as a conse- 

quence of including contributions of integrals of the strain field 

in the constitutive equations, the differential order of the govern- 

ing equations changes. This results in additional boundary condi- 

tions which should physically reflect the surface properties of the 

material/structure. The latter, however, has not been discussed rig- 

orously in literature so far and instead, the boundaries are often 

avoided in the respective analyses. When a three dimensional non- 

local formulation is employed in the analysis of plates, these ex- 

tra boundary conditions should be defined on the upper and lower 

surface of the plate. In order to investigate the significance of these 

boundary conditions, two different treatments of the boundaries 

will be addressed in this paper. 

This paper is structured as follows. In Section 2 , the fundamen- 

tals of Eringen’s nonlocal elasticity theory, some important consid- 

erations and the basis of conventional nonlocal plate theory are 

reviewed. In Section 3 , we will use a three dimensional nonlocal 

formulation to solve an example of uniformly deformed plate. For 

this purpose two types of boundary conditions will be applied for 

the nonlocal formulation. The results of this analysis will be dis- 

cussed and compared to classical plate theory in Section 4 . In the 

last section, the conclusions of this study will be presented. 

2. Nonlocal elasticity theory 

In linear nonlocal elasticity, the stress tensor ( t ) for a homoge- 

nous and continuous domain is determined as: 

t i j ( x ) = 

∫ 
V b 

α
(| x − x 

′ | , e 0 a 
)
C i jkl ε kl ( x 

′ ) dV ( x 

′ ) 

= 

∫ 
V b 

α
(| x − x 

′ | )σi j ( x 

′ ) dV ( x 

′ ) 
(1) 

where εkl ( x 
′ ) are the classical Cauchys strain components at the 

point x ′ and C ijkl are the components of the elasticity tensor 

( Eringen, 2002; 1983 ). Index k and l are the dummy index in 

Einstein’s summation convention, and Cartesian coordinates have 

been assumed. The product of these two terms can be simply 

substituted with classical stress component σ ij ( x 
′ ), as in the sec- 

ond line. Then, V b is the volume of the body at hand. The func- 

tion α(| x − x ′ | , e 0 a ) is the non-local kernel representing the ef- 

fect of long-range interactions ( Silling and Lehoucq, 2010 ). This ra- 

dial kernel reflects the nonlocal contribution of strain in all points 

x ′ of the body. The nonlocal kernel α is also a function of pa- 

rameters a and e 0 . The parameter a is the material characteristic 

length scale (e.g. atomic distance, lattice parameter, granular dis- 

tance) ( Eringen, 1984 ), and e 0 is a constant for adjusting the model 

to match experiments or other models ( Lu et al., 2007a; Eringen, 

1977; Picu, 2002 ). Other properties of the nonlocal kernel α will 

be discussed later in this section. 

It should be stressed that the proof of existence of Cauchys 

stress tensor is based on the equilibrium of contact forces with a 

force which is assumed to be continuous in space. We may use a 

similar assumption as well (as proposed in dell’Isola et al., 2014; 

Dell’Isola et al., 2016 ). Moreover, in strain gradient nonlocal the- 

ories, the constitutive equations are much more than one stress- 

strain relationship. Instead, so-called double or hyper stress com- 

ponents are defined associated to higher order strain gradients 

( Lam et al., 2003 ). In the strong nonlocal theory, however, the ba- 

sic equations for an isotropic solid can be expressed in its simplest 

form as in Eq. (1) ( Eringen, 2002; Kröner, 1967; Peerlings et al., 

2001; Di Paola et al., 2013; Engelbrecht and Braun, 1998; Silling 

and Lehoucq, 2010 ). 

Accordingly, the nonlocal strain energy is expressible as 

Eringen (1977) : 

U nonlocal = 

1 

2 

∫ 
V b 

t i j ε i j dV . (2) 

Please note that this formulation of internal energy is a particular 

case of the formulation given by Kröner (1967) , provided that the 

kernel α reflects the local (short-range) as well the nonlocal (long- 

range) effects. The equilibrium equations in the nonlocal contin- 

uum theory are the same as for classical continuum theory, but 

represented in terms of the nonlocal stresses ( t ij ) rather than the 

local stresses ( σ ij ). 

2.1. Nonlocal kernel 

The function used as the nonlocal kernel ( α(| x − x ′ | , e 0 a ) ) 
needs to have the following characteristic properties; 
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