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a b s t r a c t 

The extended displacement discontinuity method is proposed to analyze the nonlinear electric and ther- 

mal effects on an interface crack in a three dimensional (3D), transversely isotropic, piezothermoelastic 

bi-material under combined mechanical-thermo-electrical loadings. The fundamental solutions for uni- 

formly distributed, extended displacement discontinuities applied over a triangular element are obtained 

by integrating the fundamental solutions for the unit-point, extended displacement discontinuities given 

by Part 1 over the triangular area. In order to eliminate the oscillatory singularity of the stresses near the 

crack front, the Delta function in the fundamental solutions is approximated by the Gaussian distribution 

function, and accordingly, the Heaviside step function is replaced by the Error function. The extended, dis- 

placement discontinuity boundary element method with an iterative approach is proposed to determine 

the value of the fields in the crack interior for opening-crack model. As an example, an elliptical interface 

crack is studied under different electrical and thermal boundary conditions. The extended stress inten- 

sity factors (SIFs) without oscillatory singularities, the forms of the energy release rate (ERR) and local 

J -integral which can be both expressed in terms of intensity factors are obtained. The numerical method 

is validated and the influence of combined loadings and material-mismatch on the results is studied. The 

effects of different boundary conditions and ellipticity ratio on the results are also investigated. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

In Part 1 ( Zhao et al., 2016 ), the analytical solution for an 

arbitrarily shaped interface crack in a 3D piezothermoelastic 

bi-material subjected to combined mechanical-electro-thermal 

loadings is obtained. The fundamental solutions for the extended 

displacements and stresses under unit-point extended displace- 

ment discontinuities are derived, and the corresponding boundary 

integral-differential equations are obtained. The extended stress 

intensity factors (SIFs) and local J -integral as well as energy release 

rate (ERR) are all derived in terms of the extended displacement 

discontinuities across the interface crack faces. As the anlaytical 

solution is quite limited and can only be obtained for a certain 

shaped crack under uniformly distributed loadings rather than an 

arbitrarily shaped crack under complex combined loadings, the 

numerical method is thus in need for more complicated cases. 
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Among various numerical methods, the displacement discon- 

tinuity method (DDM) was first proposed by Crouch (1976) to 

solve crack problems, and it was found flexible and efficient in 

studying crack problems. This method was then extended to 

analyze piezoelectric media ( Zhao et al., 1997; Fan et al., 2009 ) 

and magneto-electro-elastic material ( Zhao et al., 2007 , 2015a , b ) 

by extending the conventional elastic displacement discontinuity 

to electric and magnetic potential discontinuities. 

It is observed from Part 1 that there exists oscillatory singular- 

ity in the interface crack problems, as is similar to the piezoelectric 

bi-materials ( Zhao et al., 2004 ), and the arisen oscillatory singu- 

larity will induce the overlapping of the cracks faces. However, 

this phenomenon is unreasonable and unrealistic, thus many re- 

searches were conducted to remove the oscillatory singularity. For 

instance, Hermann and Loboda (2003a, b ) utilized the contact-zone 

model of interface crack, Zhang and Wang (2013) and Zhao et al. 

(2014b, 2015a,b ) approximated the Delta function with Gaussian 

distribution function to eliminate the oscillatory singularity. 

Based on the obtained fundamental solutions for a unit-point 

extended displacement discontinuity given in Part 1, the fun- 
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damental solutions for a triangular element are derived in this 

paper. The Delta function in the integral-differential equations is 

approximated and replaced by the Gaussian distribution function 

as in Zhang and Wang (2013a) and Zhao et al., (2014b, 2015a, b ) 

to remove the oscillatory singularity. 

The boundary condition is a crucial factor that affects the 

fracture behavior of the interface crack in piezothermoelastic 

bi-materials, and it becomes more complicated compared with 

piezoelectric materials. Gao and Wang (2001) solved a permeable 

N-collinear crack in a piezothermoelastic material subjected to 

uniformly applied mechanical-electric loading associated with 

uniform heat flux at infinity. Zhong and Zhang (2013) proposed 

an opening crack model for piezothermoelastic materials that 

took into consideration the effects of applied mechanical-electric 

loadings on the thermal stress filed near the crack tip, where the 

electric displacement and heat flux on the crack faces were as- 

sumed to be related with the crack opening displacement. Besides, 

Zhang and Wang (2013b) discussed the application and effects of 

the five electric and thermal boundary conditions on the crack 

faces on the fracture behavior of piezothermoelastic materials in 

detail. Later Zhang and Wang (2015) took the Maxwell stresses 

into consideration to investigate the crack problem in piezoelectric 

material under combined mechanical-electric-thermal loadings. 

Making use of the obtained fundamental solutions and taking 

boundary conditions into consideration, the boundary extended 

displacement discontinuity method is proposed here to analyze an 

elliptical interface crack in a 3D, transversely, isotropic, piezother- 

moelastic bi-material as an example to check the proposed nu- 

merical method and the analytical solution. The effects of different 

electric and thermal boundary conditions and the material-match 

as well as the ellipticity ratio on the fracture behavior of the crack 

are demonstrated, and some interesting phenomena are spotted. 

This paper is organized as follows: the statement of the crack 

problem and the detailed five boundary conditions are presented 

in Section 2 , and the extended displacement discontinuity bound- 

ary integral-differential equations are listed in Section 3 . The 

extended displacement discontinuities over a triangular element 

are derived and the oscillatory singularity is removed by approx- 

imating the Delta function with Gaussian distribution function 

in Section 4 . In Section 5 , the extended stress intensity factors 

(SIFs), the local J -integral as well as the ERR are derived in terms 

of the extended displacement discontinuities. In Section 6 , the 

numerical method with an iterative method to determine the 

electric and thermal fields in the crack interior is proposed to 

study an elliptical interface crack as an example. In Section 7 , the 

correctness of the method is validated, and the effects of the com- 

bined mechanical-thermal-electric loadings and different boundary 

conditions as well as the material-mismatch and ellipticity ratio on 

the fracture behavior are all investigated. The concluding remarks 

are drawn in Section 8 . 

2. Statement of the problem 

Consider a 3D, two-phase, transversely isotropic, piezother- 

moelastic medium with the interface parallel to the plane of 

isotropy. A Cartesian coordinate system is set up with the xoy 

plane coinciding with the interface, and the polarization direction 

is along the z -direction. The two perfectly bonded dissimilar solids 

are assumed to occupy the upper and lower half-spaces, denoted 

as material 1 and 2, respectively. There exists an arbitrarily-shaped 

interface crack S lying at the interface plane xoy , and the upper 

and lower surfaces of crack S are denoted by S + and S −, respec- 

tively. The distributed combined loadings, including mechanical 

loading p z , steady heat flux h z , and electric displacement com- 

ponent D z , are applied, as schematically shown in Fig. 1 . Due to 

the perfect adhesion between the solids outside the crack along 
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Fig. 1. An arbitrarily shaped interface crack S lying in the interface plane perpen- 

dicular to the poling direction. 

the common interface, the extended stress and displacement 

components are continuous along the interface outside the crack 

S . The outer normal vectors of S + and S − have the relation 

{ n i } + = { 0 , 0 , −1 } , { n i } − = { 0 , 0 , 1 } . (1) 

When applied with combined mechanical-thermo-electro load- 

ings, the interface crack may be opened and filled by a medium 

with a certain thermal conductivity and dielectric permittivity. 

Consequently, the electric and thermal boundary conditions on the 

interface crack faces can be quite complicated. There are totally 

five types of boundary conditions to take into account (Zhang and 

Wang, 2013), which are listed as follows with D 

c 
z and h c z denoting 

the electric displacement and heat flux in the z -axis direction in 

the crack interior: 

case 1 : D 

c 
z (x, y, 0 

+ ) = D 
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−) = 0 , 

h 
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−) = 0 , 
(2a) 

for an electrically and thermally impermeable crack; 
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= 0 , D 
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−) , 
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for an electrically and thermally permeable crack; 
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for an electrically impermeable and thermally permeable crack; 
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for an electrically permeable and thermally impermeable crack; 
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(2e) 

for an electrically and thermally semi-permeable crack ( Zhang and 

Wang, 2013b ), or opening crack model ( Zhong and Zhang, 2013 ). 

Here εc and βc denote the dielectric and heat conduction in the 

crack interior, respectively. 

When dealing with a crack in an infinite media under far-field 

loadings, one can transfer the far-field loadings onto the crack 

faces. Thus the crack problem can be treated as the superpo- 

sition of crack-free problem and perturbed problem. In order 

to satisfy the traction-free condition on the crack faces in the 

original problem, the loadings applied on the crack faces in the 
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