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The vibrational properties of a face-centered cubic granular crystal of monodisperse particles are pre- 

dicted using a discrete model as well as two micropolar models, first the classical Cosserat and second 

an enhanced Cosserat-type model, that properly takes into account all degrees of freedom at the contacts 

between the particles. The continuum models are derived from the discrete model via a micro–macro 

transition of the discrete relative displacements and particle rotations to the respective continuum field 

variables. Next, only the long wavelength approximations of the models are compared and, considering 

the discrete model as reference, the Cosserat model shows inconsistent predictions of the bulk wave 

dispersion relations. This can be explained by an insufficient modeling of sliding mode of particle in- 

teractions in the Cosserat model. An enhanced micropolar model is proposed including only one new 

elastic tensor from the more complete second–order gradient micropolar theory. This enhanced micropo- 

lar model then involves the minimum number of elastic constants to consistently predict the dispersion 

relations in the long wavelength limit. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

The classical theory of elasticity consists of a macroscopic mate- 

rial description. The material is not described at the micro-level by 

considering the displacement of the different particles in interac- 

tion, but is described as a continuum by considering macroscopic 

quantities as stress and strain. The classical elasticity theory can 

be viewed as a first gradient of the displacement field approxi- 

mation of solid state theory ( Ashcroft and Mermin, 1976 ) and is 

thus valid in the long wavelength limit only. Granular media, due 

to their micro-inhomogeneous character, are not well described by 

the standard continuum theory of elasticity. In contrast to classical 

continua, where the sizes of the vibrating atoms can be assumed 

to be negligible compared to the macroscale, the sizes of the par- 

ticles in a granular assembly are comparable to it ( Schwartz et al., 

1984 ). In addition, considering the sliding, twisting and rolling re- 

sistances at the level of the contacts between the particles, a con- 

sistent description of the elasticity of a granular medium needs to 

take into account all the rotational degrees of freedom of each in- 

dividual particle and thus all the relative degrees of each pair. 

By including the rotational degrees of freedom into the analysis, 

the evaluation of the different elastic constants in the quasistatic 
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behavior of granular assemblies becomes complex ( Jenkins, 1990; 

Jenkins and Ragione, 20 01; 20 03; Ragione and Jenkins, 2009; Ra- 

gione and Magnanimo, 2012 ). The elastic behaviors of crystalline 

structures of monodisperse beads can be efficiently described by a 

discrete model, where the displacement and rotation of each indi- 

vidual bead are taken into account. One of the major differences 

with classical elasticity is the existence of optical-type rotational- 

related modes of wave propagation. Especially, the dispersion re- 

lations given by the discrete model of the bulk waves propagating 

in crystalline structures of contacting monodisperse beads, without 

solid bridges between them, is consistent with experimental re- 

sults ( Merkel et al., 2010; 2011 ) in a hexagonal close-packed struc- 

ture, and with numeric simulation results in a face-centered cubic 

structure ( Mouraille et al., 20 06; 20 09; Mouraille, 20 08 ). Neverthe- 

less, the discrete model can be solved analytically only for well- 

known regular crystalline structures, the case of a random assem- 

bly of beads can be done ( Kruyt, 2010; 2012 ) but is too complex for 

large systems. Moreover, due to diffraction scattering and attenua- 

tion effects, even for a small level of randomness, only long wave- 

length waves will propagate in a granular assembly ( Mouraille and 

Luding, 2008; Dazel and Tournat, 2010 ). More specifically, only the 

long wavelength waves can propagate as a coherent ballistic wave 

( Jia et al., 1999; Jia, 2004; Langlois and Jia, 2014 ). Considering that 

only the long wavelength waves will propagate in random assem- 

blies, which differs from the ideal crystalline case, and that their 

discrete modeling is too complex, a continuum formulation seems 

http://dx.doi.org/10.1016/j.ijsolstr.2016.11.029 

0020-7683/© 2016 Elsevier Ltd. All rights reserved. 

http://dx.doi.org/10.1016/j.ijsolstr.2016.11.029
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ijsolstr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijsolstr.2016.11.029&domain=pdf
mailto:aurelien.merkel.etu@univ-lemans.fr
mailto:s.luding@utwente.nl
http://dx.doi.org/10.1016/j.ijsolstr.2016.11.029


92 A. Merkel, S. Luding / International Journal of Solids and Structures 106–107 (2017) 91–105 

more suitable. A continuum model is also relevant when consider- 

ing the wave propagation in a granular assembly in contact with 

an elastic solid ( Wallen et al., 2015 ). 

The generalization of the classical elasticity theory accounting 

for the rotational degrees of freedom of bodies is known as the 

Cosserat theory ( Cosserat and Cosserat, 1909; Eringen, 1999 ). For 

instance, a Cosserat model can explain the strain localization in a 

sheared fault gauge ( Pasternak et al., 20 03; 20 04; 20 06 ). But, from 

a direct comparison between the dispersion relations predicted 

with a discrete model and with the ones of a Cosserat model, 

the latter does not predict correctly the dispersion relations of the 

modes of propagation related to the rotational motion of the beads 

( Merkel et al., 2011 ). Similarly, the simulation results of a Couette 

shear cell differ from the predictions of a Cosserat model ( Mohan 

et al., 1999; Lätzel et al., 2001; Mohan et al., 2002; Latzël, 2003 ). 

Despite many theoretical effort s, the comparison between experi- 

mental results and predictions from the Cosserat theory remains 

inconclusive; a consistent continuum description of granular as- 

semblies is still challenging, see Maugin and Metrikine (2010) and 

Goddard (2014) and the references therein. As it will be shown be- 

low, one of the interactions, or relative degrees of freedom, be- 

tween the beads involving the rotational degrees of freedom is 

not modeled properly leading to inconsistent results. A reconstruc- 

tion of the Cosserat moduli ( Pasternak and Dyskin, 2014 ) can lead 

to misleading results. The drawback of the Cosserat theory can 

be overcome using a second-order gradient theory ( Mühlhaus and 

Oka, 1996; Suiker et al., 20 01a; 20 01b; Suiker and de Borst, 2005 ), 

where the homogenization is performed by differential expansions 

( Pasternak and Mühlhaus, 2002b; Pasternak and Mühlhaus., 2005 ). 

Nevertheless, the second-order gradient micropolar theory intro- 

duces three new elastic tensors, which involve too many new elas- 

tic constants to represent a feasible alternative to the discrete 

modeling. A homogenization by integral transformation resulting 

into a non-local Cosserat continuum theory gives the same re- 

sults as the discrete model, but this approach does not provide 

any simplification compared to the discrete model, see Pasternak 

and Mühlhaus (2002a) and Pasternak and Mühlhaus. (2005) and 

the references therein, and it is not considered here. 

In this work, after an identification of the drawbacks of the 

Cosserat model, we propose a model based on a continuum for- 

mulation that correctly describes the wave propagation in gran- 

ular media in the long wavelength limit. In Section 2 and in or- 

der to get a reference for the comparison of the continuum mod- 

els, the general theoretical evaluation of the bulk wave propagation 

in a granular assembly using a discrete model, which follows the 

derivation in Merkel et al. (2010) , is presented. The different inter- 

actions between the beads due to contact forces and torques are 

discussed. In Section 3 , the dispersion relations of the bulk eigen- 

modes propagating in a Face-Centered Cubic (FCC) structure along 

the x -axis are derived using the discrete model. The long wave- 

length approximations of the dispersion relations, which can be 

directly compared with the predictions of the continuum models, 

are then derived. Two cases of contacts between the beads are con- 

sidered. In the first one, the contacts are considered without solid 

bridges between the beads and the surface roughness is negligible; 

this case is called the frictional case corresponding to normal and 

sliding resistant contacts. In the second one, the contacts between 

the beads are considered with solid bridges and this case is called 

the rolling and twisting resistant case . In Section 4 , the dispersion 

relations of the discrete model are compared to those obtained 

trough numerical simulations of wave propagation in a FCC struc- 

ture. In Section 5 , the macroscopic continuum models are derived 

from the microscopic relations of the discrete model following 

the homogenization techniques proposed in Suiker et al. (2001a ; 

2001b ). In Section 6 , the dispersion relations of the bulk eigen- 

modes in a FCC structure are derived with the Cosserat model. The 

problems and drawbacks of this model are then discussed. Finally 

in Section 7 , the enhanced micropolar model is presented and it is 

shown that its approximations for small wavenumber are exactly 

equal to those of the discrete model in both frictional, rolling and 

twisting resistant cases. 

2. Description of the problem, starting from the discrete theory 

An assembly of monodisperse beads is considered, all of them 

being composed by the same material. The diameter of the beads 

is a , the mass density of the material constituting the beads is ρb , 

its Poisson’s ratio is ν . The mass of one bead with homogeneous 

density is m b = πρb a 
3 / 6 , its moment of inertia is I b = m b a 

2 / 10 . 

The problem is considered in Cartesian coordinates with unit vec- 

tors ( ̂ x , ̂  y , ̂  z ) . The position of a bead α is defined by the vector R 

α . 

A local coordinate system ( n, s, t ) at the level of the surface of 

contact between two beads is defined: The unit vector n , normal 

to the surface of contact between two beads α and β , is defined 

as Merkel et al. (2010) and Chang and Gao (1995a ); 1995b ) 

n = (R 

β − R 

α) / | R 

β − R 

α| 
= cos φ ˆ x + sin φ cos θ ˆ y + sin φ sin θ ˆ z � (R 

β − R 

α) /a, (1) 

where it is assumed that the static and dynamic overlaps be- 

tween the particles are negligible compared to their diameter, φ = 

arccos (n · ˆ x ) , θ = arccos (n · ˆ y / sin φ) if φ � = 0 and θ = φ if φ = 0 

or π ( Chang and Gao, 1995a ). The two unit vectors s and t , which 

are in the contact plane, are defined as 

s = ∂ n /∂ φ = − sin φ ˆ x + cos φ cos θ ˆ y + cos φ sin θ ˆ z , 

t = n × s = − sin θ ˆ y + cos θ ˆ z . (2) 

The infinitesimal displacement of bead α is u 

α , its infinitesimal an- 

gular rotation is w 

α . The dispersion relations are deduced below 

from the equations of motion for translation 

m b 

∂ 2 u 

α

∂t 2 
= 

∑ 

β

F βα, (3) 

and rotation 

I b 
∂ 2 w 

α

∂t 2 
= 

∑ 

β

M 

βα + 

1 

2 

∑ 

β

D 

βα × F βα, (4) 

where the summation is over all the beads β in contact with the 

bead α and the branch vector is 

D 

βα = R 

β − R 

α. (5) 

The direct use of the branch vector in Eq. (5) in the equation of 

motion for rotation in Eq. (4) is only valid in the case of monodis- 

perse beads, i.e., | R 

β | = | R 

α| , see Suiker et al. (2001a ), Chang 

and Gao (1995a ), Chang and Gao (1995b ) and Luding (2008) for 

more general formulations. From the linearization of the Hertz- 

Mindlin contact model between two beads, the contact interac- 

tions can be modeled by using a normal and a shear stiffness 

K N and K S , respectively ( Duffy and Mindlin, 1956; Johnson, 1985; 

Thornton and Yin, 1991; Gilles and Coste, 2003 ). It should be no- 

ticed that this excludes all the nonlinear effects from the analysis 

( Nesterenko, 2001; Tournat and Gusev, 2010 ). In the case where 

all the monodisperse beads are composed by the same material, 

the ratio of shear to normal stiffness is given by 
K = K S /K N = 

2(1 − ν) / (2 − ν) . Since the overlap of the beads in contact is small, 

also the diameter of the surface of contact d is assumed to be small 

compared the diameter of the beads, e.g. d � a . Considering the 

projections on the x, y, z axis of the force applied by bead β on 

bead α as Merkel et al. (2010) and Suiker et al. (2001a ) 

F 
βα

i 
= K N n i n j (u 

β
j 

− u 

α
j ) + K S (s i s j + t i t j ) 



Download English Version:

https://daneshyari.com/en/article/4922627

Download Persian Version:

https://daneshyari.com/article/4922627

Daneshyari.com

https://daneshyari.com/en/article/4922627
https://daneshyari.com/article/4922627
https://daneshyari.com

