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a b s t r a c t 

This article presents a new approach for inverse identification of all elastic constants of a 3D generally 

anisotropic solid with arbitrary geometry via measured strain data. To eradicate the nonlinear inequality 

constraints posed on the elastic constants, the problem is first transformed to an unconstrained one by 

the Cholesky factorization theorem. The cost function is defined by the Tikhonov regularization method, 

and the inverse problem is solved using the damped Gauss-Newton technique, where a meshless method 

is employed for the direct and sensitivity analyses. To demonstrate the effectiveness of the proposed 

approach, several examples are presented in the end, where all experimental data are numerically simu- 

lated. Analyses of these examples show that all twenty-one elastic constants of an example material can 

be correctly identified even when measurement errors are relatively large and initial guesses are far from 

exact values. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

In engineering industries, anisotropic materials have been ex- 

tensively used for various applications. The fourth-order tensor of 

elasticity for a generally anisotropic elastic material is expressed 

in terms of 21 independent elastic constants ( Sadd, 2009 ), each 

of which cannot be measured separately. For evaluation of these 

constants, it is advantageous to use displacements/strains as mea- 

sured data, obtained from static experiments without specific lim- 

its on specimen size and geometry. Over the years, a great amount 

of identification works have been reported in this regard either for 

isotropic or anisotropic materials. Although the amount of research 

is extensive in this area, only a few of such works are reviewed 

herein, especially for anisotropic materials. 

Wang and Kam (20 0 0) presented an algorithm of multi-start 

global optimization, based on the finite element method (FEM) to 

identify the five elastic constants of laminated composite plates. By 

considering the lower/upper bounds of the elastic constants, they 

formulated this problem as a constrained minimization problem. 

Shin and Pande (2003) presented a finite element-based method 

to identify the nine elastic constants of an orthotropic material 

with known principal material axes. In their method, the displace- 

ments measured at several points were used to train a neural net- 

work model, by which the unknown material parameters were 
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computed. Huang et al., (2004) presented an inverse technique 

based on the boundary element method (BEM) and the Levenberg- 

Marquardt method for identification of elastic parameters of 2D 

orthotropic bodies. They used displacement measurements to iden- 

tify the four elastic constants of 2D orthotropic materials. For iden- 

tification of the six elastic constants of 2D anisotropic materials, 

Comino and Gallego (2005) presented an inverse technique based 

on the Levenberg-Marquardt method by use of the boundary ele- 

ment method. 

Huang et al., (2006) studied the optimal measurement loca- 

tions for identification of elastic constants of 2D orthotropic ma- 

terials by an iterative process. Lecompte et al., (2007) proposed 

a technique based on the Gauss-Newton optimization method 

for identification of the four in-plane elastic constants of an or- 

thotropic plate, where strain measurements from a biaxial tensile 

test were used in their FEM computations. Bruno et al., (2008) pre- 

sented an inverse method for identification of the four elastic con- 

stants of orthotropic plates with arbitrary shapes. In the compu- 

tations by their genetic algorithm, the FEM was employed and 

the full-field measurements of surface displacements were used. 

Furukawa and Pan (2010) presented an energy-based technique 

for stochastic identification of the four elastic constants of 2D or- 

thotropic materials. This technique recursively evaluates the un- 

known elastic constants at every acquisition of measurements us- 

ing the Kalman filter. Hematiyan et al., (2012) presented an inverse 

technique based on the BEM to identify the six elastic constants 

of 2D anisotropic bodies using displacement measurements. Their 
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formulation makes it possible to use measurement data from sev- 

eral experiments for identification of the elastic constants. They 

concluded that two or three simple experiments would result in 

more accurate solutions than a single complicated test. Chen et 

al., (2013) proposed an inverse technique based on the scaled fi- 

nite boundary element method to identify the four elastic con- 

stants of 2D orthotropic bodies using measured displacements 

and the Levenberg-Marquardt method. They considered inequal- 

ity constraints on the elastic constants in their inverse analysis. 

Nigamaa and Subramanian (2014 ) used the eigen-function virtual 

fields method (VFM) to identify the four in-plane elastic constants 

of orthotropic materials using the full-field strain data obtained 

from a bending test. In their study, two elastic constants were ob- 

served to have severe sensitivity to noises in the strain data. Fur- 

thermore, Jiang et al., (2015) used the VFM to identify the four or- 

thotropic elastic constants of fiber-reinforced polymer-matrix com- 

posites using full-field strain measurements from a three-point 

bending test. Recently, Gu and Pierron (2016) numerically exam- 

ined four types of static experiments for identification of elastic 

constants of 2D orthotropic materials using the VFM. Despite its 

success in inversely identifying 2D elastic properties, the same ef- 

fectiveness of the VFM cannot be met for 3D members due to the 

necessary full-field measurements. 

As is obvious from the literature review, all works in the past 

were presented for identification of 2D elastic constants only. Al- 

though 3D generally anisotropic materials with 21 elastic con- 

stants may not be of important interest for engineering applica- 

tions; however, materials with one or more plane of symmetry, but 

with unknown orientations of planes of symmetry, may be consid- 

ered as 3D generally anisotropic materials in the identification pro- 

cess. After determining the values of elastic constants, the orienta- 

tions of material planes of symmetry or the direction of principal 

axes of the material can be found. To the authors’ best knowledge, 

a method for identification of all elastic constants of 3D general 

anisotropic materials using static measurements has not been pre- 

sented in the literature yet. 

For a 2D general anisotropic material, there are six indepen- 

dent elastic constants, while those for 3D cases are twenty-one. 

For identification of the large number of elastic constants of 3D 

cases, the inverse analysis is very challenging indeed. It should be 

mentioned that if a 2D specimen is obtained by cutting a part of 

the main 3D anisotropic body, the specimen is not necessarily an 

orthotropic material with in-plane principal axes and therefore, the 

specimen exhibits out-of-plane deformation even if it is subjected 

to in-plane loads. In other words, in general, it is impossible to 

find some elastic constants of a 3D generally anisotropic material 

by conducting experiments on a 2D specimen. 

In this paper, a new stable inverse method is presented for 

identification of all twenty-one elastic constants of 3D general 

anisotropic materials using static measurements. In the process 

of the inverse analysis, nonlinear inequality constraints on elastic 

constants need to be satisfied. For solving the problem more eas- 

ily, the constrained inverse problem is first converted to an uncon- 

strained one by the Cholesky factorization theorem and a suitable 

transformation. In the inverse analysis, the damped Gauss-Newton 

method ( Björck, 1996; Ortega and Rheinboldt, 20 0 0 ) is employed 

for minimization of the cost function defined by the Tikhonov reg- 

ularization method ( Tikhonov and Arsenin, 1977 ). It is very un- 

likely to accurately determine all the twenty-one constants using 

only one simple static experiment. In the present work, a multi- 

experiment based inverse formulation is developed for carrying 

out the inverse analysis. Herein, several simulated experimental 

data are supplied using the direct analyses of a meshless method. 

Necessary sensitivity analyses are accurately formulated by direct 

differentiation of the weak form of the governing equations. In the 

end, several numerical examples are presented to demonstrate the 

feasibility of the proposed method for the 3D inverse analysis. Ad- 

ditionally, the effects of measurement noise are also studied for 

these examples. It turns out that all the twenty-one elastic con- 

stants of a 3D arbitrarily shaped anisotropic solid can be correctly 

identified using several (even less than 21) sensors by employing a 

few static tests. 

2. Basic equations of anisotropic elasticity 

In this section, basic equations of anisotropic elasticity are re- 

viewed. Original works on anisotropic elasticity have been carried 

out by Love (1927), Hearmon (1961) and Lekhnitskii (1981) ; how- 

ever, basic equations of anisotropic elasticity in a modern notation 

can be found in standard elasticity or continuum mechanics text- 

books ( Sadd, 2009; Lai et al., 2009 ). 

As is well known, the elastic deformation of an anisotropic solid 

is governed by the Hooke’s law and the strain-displacement rela- 

tions. In absence of body forces, the equilibrium condition states 

σi j, j = 0 , (1) 

where σ ij are components of the stress tensor. The stress-strain 

relation of the Hooke’s law is expressed as 

σi j = C i jkl ε kl , (2) 

where C ijkl is the fourth-order stiffness tensor, satisfying 

C i jkl = C i jlk , C jikl = C i jlk , C i jkl = C kli j (3) 

and ε kl are strain components, related to the displacements u i by 

ε i j = 

1 

2 

( u i, j + u j,i ) . (4) 

Eqs. (1) –( 4 ) must be satisfied at every point of an anisotropic 

solid, either inside the domain � or over the boundary �; in ad- 

dition, boundary conditions must also be satisfied. Let �u and �t 

be two non-overlapping parts of the boundary, i.e. �=�u ∪ �t and 

�u ∩ �t =0. Suppose the boundary conditions of the Dirichlet and 

Neumann types are given as follows: 

u (x ) = ˆ u (x ) x ∈ �u , (5) 

t (x ) = ̂

 t (x ) x ∈ �t , (6) 

where ˆ u (x ) and ̂

 t (x ) are prescribed displacement and traction vec- 

tor functions, respectively. The traction vector is related to the 

stress tensor as follows: 

t i = σi j n j , (7) 

where n j are components of the unit vector normal to the bound- 

ary. From the conditions of Eq. (3) , the number of independent 

elastic constants of a general anisotropic solid is reduced to 21 and 

Eq. (2) can be written in the following matrix form: ⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

σ11 

σ22 

σ33 

σ23 

σ31 

σ12 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

C 1111 

C 2211 C 2222 Sym . 

C 3311 C 3322 C 3333 

C 2311 C 2322 C 2333 C 2323 

C 3111 C 3122 C 3133 C 3123 C 3131 

C 1211 C 1222 C 1233 C 1223 C 1231 C 1212 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

ε 11 

ε 22 

ε 33 

2 ε 23 

2 ε 31 

2 ε 12 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, 

(8) 

or alternatively expressed in the Voigt notation as follows: ⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

σ1 

σ2 

σ3 

σ4 

σ5 

σ6 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

C 11 

C 21 C 22 Sym . 

C 31 C 32 C 33 

C 41 C 42 C 43 C 44 

C 51 C 52 C 53 C 54 C 55 

C 61 C 62 C 63 C 64 C 65 C 66 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

ε 1 
ε 2 
ε 3 
ε 4 
ε 5 
ε 6 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

. (9) 
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