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a b s t r a c t 

This paper presents an investigation of the initial resonant vibration frequency of largely deformed can- 

tilevered beams. This study is important because the vibration of beams with this level of deformation 

occurs from a position that differs significantly from the undistorted configuration. As the deformation 

of the beam increases, the lateral force component acting tangentially to the beam’s newly curved shape 

also increases, changing its stiffness and influencing the resonant frequency of the system. The exper- 

imental component of this study shows that as the deformation of the beam increased, the difference 

between the resonant frequencies of the straight and deformed beams increased with the length of the 

beam. However, this difference decreases and the frequency rises slightly, precisely indicating the mo- 

ment in which the aforementioned lateral force component starts to influence the stiffness of the bend- 

ing piece. A computer model was then prepared to obtain the resonant frequency of the beam using 

the finite element method to confirm the experimental results for two scenarios: considering the beam 

in its horizontal configuration, and considering the beam in its deformed configuration using nonlinear 

static analysis processing, which has been previously applied in other theoretical investigations of large 

displacements. The results of the second method demonstrated a favorable approximation of the experi- 

mental values. An analytical evaluation was also performed. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

The vibration response of framed structures modeled as beams 

and columns has been and continues to be studied extensively 

because these beams and columns are fundamental structural el- 

ements in many industrial applications. These structures are fre- 

quently subjected to dynamic loading, resulting in large amplitude 

deformation and vibrations that introduce a geometric type of non- 

linearity influencing the dynamic behavior of the structure. 

The Euler–Bernoulli beam represents a continuous structural 

member, and its vibrations are governed by nonlinear partial dif- 

ferential equations for which exact analytical solutions cannot be 

found ( Awrejcewicz et al., 2015; Lee, 2002 ). The dynamic bend- 

ing of beams, also known as the flexural vibration of beams, was 

first investigated by Daniel Bernoulli in the late 18th century. 

Bernoulli’s equation of motion of a vibrating beam tended to over- 

estimate the resonant frequencies of beams and was marginally 
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improved by Rayleigh (1945) with the addition of a mid-plane 

rotation. The nonlinear vibrations of Euler–Bernoulli beams have 

been studied for a long time, since approximately 1750 ( Rayleigh, 

1945 ). The work presented by Timoshenko (1921) improved the 

theory further by identifying the effect of shear on the dynamic 

response of bending beams. This contribution was expounded 

upon by Kaneko (1975) and Rosinger and Ritchie (1977) , extend- 

ing the theory to problems involving high-frequency vibrations, for 

which the dynamic Euler–Bernoulli theory is inadequate. Nonethe- 

less, the Euler–Bernoulli and Timoshenko theories for the dynamic 

bending of beams continue to be widely used by engineers Fey 

et al. (2011) highlight the study performed by Stoykov and Ribeiro 

(2011) , which investigated the geometric nonlinear periodic vibra- 

tions of beams under harmonic forces, conducting a set of numer- 

ical experiments modeling the movement of a clamped–clamped 

aluminum beam. 

However, it is important to consider that dynamic loading can 

have significant effects on the responses of structural character- 

istics. In many applications, nonlinear large deformation beam 

elements are needed to account for bending, axial, and shear 

deformation properties ( Nachbagauer et al., 2011 ). 

http://dx.doi.org/10.1016/j.ijsolstr.2016.10.018 
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Fig. 1. Diagram of linear problem. 

This article presents an experimental study of the initial reso- 

nant vibration frequency of largely deformed cantilevered beams 

that remain under the influence of their geometric stiffness. The 

experimental results are compared with those determined analyt- 

ically from a closed-form equation and those obtained via the fi- 

nite element method (FEM), using modal analysis for eigenvalues 

obtained for the modified stiffness of the beam after large static 

displacement. Specifically, this work seeks to identify the initial 

resonant frequency in cantilevered beams with large deformations 

that are caused by geometric effects or by variation in the beam’s 

stiffness resulting from a transverse force component acting tan- 

gentially to the beam axis. This transverse force component must 

include the beam’s own weight, which generates a certain amount 

of tension at each different beam length. 

2. Linear vibration of a cantilever beam/column 

To understand the problem of small amplitude vibrations in 

beams/columns, the configuration presented in Fig. 1 is considered. 

Notably, the system containing just the lateral degree of freedom 

has been in an undamped free movement. This system is com- 

posed of a prismatic bar made from a linear elastic material, which 

is embedded in the left side or in the base bearing its own weight, 

and a mass on the free extremity. The Euler–Bernoulli hypothesis, 

in which the cross section was normal to the axis of the beam 

before deformation remains straight after deformation, inextensi- 

ble, and rotate as rigid lines to remain to perpendicular the bent 

axis, is considered. For the linear case, the movement of the sys- 

tem does not alter the orientation of the generalized normal force 

N(x) , which has to be taken into consideration. A similar mathe- 

matical procedure is presented by Clough and Penzien (1993) . If 

the beam/column is in movement, the amplitude of the lateral dis- 

placement of the free end of the beam/column is given by the gen- 

eralized coordinate, represented by D T (t) . Thus, any transverse dis- 

placement of the bar is unequivocally defined by 

v (x, t) = φ(x ) D T (t) , (1) 

where φ(x) is a shape function that satisfies the boundary condi- 

tions of the problem and D T (t) is a transient displacement. 

The use of Eq. (1) implies the constancy of the shape of vibra- 

tion with respect to time, representing that only the amplitude of 

the movement is varying, and it varies harmonically with the free- 

moving condition. The assumption of f as a function of x effec- 

tively restricts the bar to a system with a single degree of freedom 

(SDOF). This affirmation is based on the Rayleigh method (1945) 

that assumed that a system with infinite degrees of freedom can 

be replaced by a single degree of freedom (SDOF) system in or- 

der to approximate its frequency. The Rayleigh method depends 

entirely on the functional form that is used to represent the free 

vibration mode. If the exact shape were assumed, the exact cor- 

responding frequency would be generated by this method. In fact, 

the most critical aspect of this method is the selection of appro- 

priate functions. If these functions form a complete set, the natural 

frequencies converge to the actual value. If still, considering these 

assumptions, the principle of virtual work is used at the same time 

a single close-form formulation is found. 

Thus, the frequency of vibration can be used to find the maxi- 

mum strain energy developed during the movement and the maxi- 

mum kinetic energy. Therefore, the principle of virtual work is suf- 

ficient to describe the movement of the structure. 

The work done by the external forces over the virtual displace- 

ment is 

δW E = −
∫ L 

0 

f I (x, t) δv (x ) dx + N(x ) δD L , (2) 

where f I (x, t) = m̄ (x ) ̈v (x, t) represents the inertial force and D L is 

the axial displacement. The work of the virtual internal forces is 

given by 

δW I = 

∫ L 

0 

M(x, t) δv ′′ (x ) dx , (3) 

where δv ′′ (x ) = 

∂ 2 δv (x ) 

∂ x 2 
. 

To find the axial displacement D L (t) , it is necessary to take an 

infinitesimal element of the elastic line of the bar. Then, the short- 

ening of the axis due to the axial displacement will be 

ds − dx = 

√ 

d x 2 + d v 2 − dx = dx 

√ 

1 + 

(
dv 
dx 

)2 

− dx . (4) 

Because the superior order terms are small when compared 

to unity, an acceptable approximation by the binomial expansion 

yields 

ds − dx = dx 

[ 

1 + 

1 

2 

(
dv 
dx 

)2 
] 

− dx = 

1 

2 

(
dv 
dx 

)2 

. (5) 

By integrating Eq. (5) over the length of the entire beam, the 

following equation is obtained, with the first derivate indicated as 

a superior line on the right side: 

D L = 

1 

2 

∫ L 

0 

[
v ′ (x, t) 

]2 
dx . (6) 

Because the parameters necessary for the solution of the prob- 

lem may be expressed as functions of the generalized coordi- 

nate D T and a form function φ(x), the following equations are 

obtained: 

v ( x, t ) = φ(x ) D T (t) ; v̈ (x, t) = φ(x ) ̈D T (t) ; δv ′ (x, t) = φ(x ) ′ δD T (t) ;
v ′ (x, t) = φ′ (x ) D T (t) ; ˙ v ′′ (x, t) = φ′′ (x ) ̇ D T (t) ; δv ′′ (x, t) = φ(x ) ′′ δD T (t) 

v ′′ (x, t) = φ′′ (x ) D T (t) ; δv (x, t) = φ(x ) δD T (t) ; δD L = 

∫ L 
0 v 

′ (x, t) δv ′ (x ) dx 

. (7) 

Conveniently, substituting terms defined in Eq. (7) into Eqs. 

(2) and (3) yields, respectively, 

δW E = 

[
−D̈ T (t) 

∫ L 

0 

m 1 ( φ(x ) ) 
2 
dx + D T (t) 

∫ L 

0 

N(x ) ( φ′ (x ) ) 
2 
dx 

]
δD T , 

(8) 

and 

δW I = 

[
D T (t) 

∫ L 

0 

EI 
(
φ′′ (x ) 

)2 
dx 

]
δD T . (9) 
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