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a b s t r a c t 

This paper elucidates the global and local interactive buckling behavior of a stiff film resting on a compli- 

ant substrate under uniaxial compression. The resulting governing non-linear equations (non-autonomous 

fourth-order ordinary differential nonlinear equations with integral conditions) are then solved by intro- 

ducing a continuation algorithm, which offers considerable advantages to detect multiple bifurcations and 

trace a complex post-buckling path. The critical conditions for local and global buckling and respective 

post-buckling equilibrium paths are carefully studied. Two different evolution mechanisms of buckling 

modes and processes from destabilization to restabilization (snap-back) are observed beyond the onset 

of the primary sinusoidal wrinkling mode in the post-buckling range. In addition, the shear modulus of 

an orthotropic substrate acts as a dominant role in the bifurcation portrait. Our results offer better un- 

derstanding of the global and local buckling behaviors of such a bilayer system, and can open up new 

opportunities for the design and applications of novel nanoelectronics. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Bilayer systems consisting of a stiff thin film on a compliant 

substrate have provoked a surge of research interest in academic 

domains over the last decade ( Bowden et al., 1998 ; Huang and 

Suo, 2002 ; Schweikart and Fery, 2009 ). When such a system is sub- 

jected to a large compression, it may lose its original flat surface 

and leads to buckling, which may dramatically alter their inher- 

ent structural equilibrium and thus results in a series of changes 

in properties ( Efimenko et al., 2005; Koch et al., 2009; Wang 

et al., 2013 a). As such, the film/substrate system in the post- 

buckling state has potential uses as stretchable electronic devices, 

tunable diffraction and phase gratings or patterned platforms for 

cell adhesion ( Harrison et al., 2004; Stafford et al., 2004; Rogers 

et al., 2010 ).. Many previous studies have shown that a number of 

possible post-buckling morphologies may occur in the surface, in- 

cluding global buckling, sinusoidal, checkerboard, herringbone, etc 

( Chen and Hutchinson, 2004; Cai et al., 2011; Wang et al., 2013b; 

Xu et al., 2015 ). How to comprehensively evaluate these possible 

morphologies, as well as their relationship and formation mecha- 

nism, remains a challenge ( Li et al., 2012 ). 
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Thus far, several theoretical approaches, such as linear perturba- 

tion analysis and non-linear buckling analysis, have been proposed 

and become effective means for exploring the instability behav- 

ior of the systems ( Wang et al., 2008; Im and Huang, 2008; Zhuo 

and Zhang, 2015 ). However, most of these studies have focused on 

the critical load and morphologies at the initial stage of instabil- 

ity threshold. There is a lack of investigation on the morphological 

evolution and mode transition in the post-buckling stage due to in- 

credibly complication, such as geometrical and material nonlinear- 

ities, loading path dependence, etc. Therefore, reliable numerical 

solution techniques for tracing and branch switching post-buckling 

response of film/substrate system are in demand. 

Recent effort s have been devoted to such post-buckling analy- 

sis by using finite element methods ( Sun et al., 2012; Cao et al., 

2012 ), which is more flexible to describe complicated geometries 

and boundary conditions. However, the simulation may not capa- 

ble to trace a more complex case, especially whose post-buckling 

path is accompanied with snap-back or snap-through phenomenon 

due to the presence of secondary instabilities such as local buck- 

ling. Information about bifurcations is not immediately available to 

the user and stopping and restarting the simulation at a fixed point 

is not straightforward ( Pirrera et al., 2010; Ke et al., 2016 ). 

For all of the aforementioned reasons, we adopted a contin- 

uation algorithm to solve the resulting non-linear equations, in 

consideration of possible bifurcations along the equilibrium path 
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Fig. 1. (a) Illustration of a film/substrate system under compression; (b) Sway and 

tilt components. 

tracing of the non-linear response of a system. It appears as a 

significantly efficient path-following technique with two key fea- 

tures, the detection of bifurcation points and the branch-switching 

from one equilibrium path to another bifurcation path, and has 

been demonstrated to be an efficient technique to deal with var- 

ious non-linear problems in solid mechanics ( Damil and Potier- 

Ferry, 1990; Wadee and Hunt, 1998; Abichou et al., 2002; Wadee 

et al., 2015 ). The following problem thereby can be computed by 

coupling analytical models with the continuation algorithm. 

In this paper, a comprehensive study of the global and local 

instability behaviors in film/substrate systems is provided from a 

continuum mechanics perspective. The study is structured as fol- 

lows. In Section 2 , the buckling governing equations, taking ac- 

count of the global and local deformations are established. The aim 

here is to describe different morphologies of the film/substrate un- 

der compression. In Section 3 , the resulting governing equations 

are solved by introducing a continuation algorithm to trace the 

whole equilibrium paths and obtain post-buckling characteristics 

of the systems. Section 4 presents the results, including the crit- 

ical condition for local and global buckling, the respective post- 

buckling equilibrium paths and mode evolutions. Finally, the ef- 

fects on bifurcation portrait of orthotropic substrate are discussed. 

2. Model formulation 

In this work we investigate the instability behavior of an 

isotropic stiff film with a thickness of h f on a soft orthotropic sub- 

strate. The compliant substrate has different Young’s moduli in the 

axial direction Ex and the transverse direction Ey and an associ- 

ated shear modulus G with a finite thickness of h s and a length 

of L x . Poisson’s ratios in the x- and y-directions are vx and vy , re- 

spectively. The structural parameters are described by a Cartesian 

coordinate system, where the longitudinal direction and the trans- 

verse horizontal direction are determined as the x-axis and the y- 

axis, respectively ( Fig. 1 (a)). The bilayer system deforms in the x-y 

plane and distributes uniformly along z-axis (perpendicular to the 

x-y plane). A steady axial compressive force F is applied at each 

side of the substrate. 

Different instability phenomena may occur in this bilayer sys- 

tem, including global buckling, local wrinkling and their interactive 

buckling. In order to describe these complicated instability phe- 

nomena, the formulation of the model is described through both 

the global and the local modal displacements. Firstly, two dimen- 

sionless factors are introduced to present the global sway and tilt, 

i.e., q s and q t , directly to describe the shear effect ( Fig. 1 (b)), which 

has a great effect on the formation of local buckling. 

Here q s not necessarily equals q t , which is different from the 

Euler model where the two are assumed to be identical. Then, the 

global sway W ( z ) and tilt θ ( z ) can be approximated as the follow- 

ing expressions ( Bai and Wadee, 2015; Wang et al., 2016 ): 

W (x ) = q s L sin 

πx 

L 

θ (x ) = q t π cos 
πx 

L 
. (1) 

Thus the corresponding shear strain is given by: 

γxy (x ) = ( q s − q t ) π cos 
πx 

L 
. (2) 

Secondly, local wrinkling deformation is described by two func- 

tions u f ( x ) and w f ( x ), for the local in-plane and transverse displace- 

ments, respectively. It is noted that these functions have no phe- 

nomenological assumptions and are sought as solutions from min- 

imization of total potential energy. Therefore, they can well de- 

scribe the buckling evolution without wrinkling pattern or number 

restriction. 

The total potential energy of the system, �, is mainly composed 

of bending energy, U B , membrane energy, U M 

, elastic strain energy 

of the substrate, U S , and work done by load, U L , and is expressed 

as follows: 

� = U B + U M 

+ U S − U L . (3) 

The bending energy of the thin film is due to the collective ef- 

fect of global and local deformations, and can be expressed as: 

U B = 

1 

2 

EI 

∫ L x 

0 

( Ẅ 

2 + ẅ 

2 
f ) d x 

= 

1 

2 

EI 

∫ L x 

0 

(
2 q 2 s 

π4 

L 2 
sin 

2 πx 

L 
+ ẅ 

2 
f 

)
d x. (4) 

where EI = 

E f L z h 
3 
f 

12(1 −v 2 
f 
) 

is the flexural rigidity of the film; L z denotes 

the breadth of the film; E f and v f are Young’s modulus and Pois- 

son’s ratio, respectively. In addition, the notation “dot” above the 

variables denotes a spatial derivative d / dx . 

Along with bending energy, the film is also subjected to mem- 

brane action. When nonlinear large deformation is taken into ac- 

count, the total membrane energy can be expressed as follows ac- 

cording to the von Kármán hypothesis: 

U M 

= 

1 

2 

E f h f L z 

∫ L x 

0 

( ε x ) 
2 
d x 

= 

1 

2 

E f h f L z 

∫ L x 

0 

( 
1 

2 

h s 
˙ θ−�+ ̇ u + 

1 

2 

˙ w 

2 ) 2 d x. (5) 

where 1 
2 h s 

˙ θ is the axial strain term corresponding to the global 

buckling, ˙ u + 

1 
2 

˙ w 

2 is the axial strain term corresponding to the lo- 

cal wrinkling deformation, � is the axial strain term correspond- 

ing to purely uniform compressive strain, which contributes to the 

pre-buckling equilibrium path. 

As the system generally has an extremely large ratio of Young’s 

modulus ( E f / E s ≈ 10 5 ), the terms for the axial strain energy in the 

substrate are assumed to be small compared to the membrane en- 

ergy in the film. Therefore, the substrate provides only a small 

proportion of the axial resistance, but the main resistance to lo- 

cal transverse displacement and shear deformation ( Wadee and 

Hunt, 1998; Audoly and Boudaoud, 2008 ). Further justification will 
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