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a b s t r a c t 

Lattice systems and discrete networks with dissipative interactions are successfully employed as meso- 

scale models of heterogeneous solids. As the application scale generally is much larger than that of the 

discrete links, physically relevant simulations are computationally expensive. The QuasiContinuum (QC) 

method is a multiscale approach that reduces the computational cost of direct numerical simulations by 

fully resolving complex phenomena only in regions of interest while coarsening elsewhere. In previous 

work (Beex et al., J. Mech. Phys. Solids 64, 154–169, 2014), the originally conservative QC methodology 

was generalized to a virtual-power-based QC approach that includes local dissipative mechanisms. In this 

contribution, the virtual-power-based QC method is reformulated from a variational point of view, by 

employing the energy-based variational framework for rate-independent processes (Mielke and Roubíček, 

Rate-Independent Systems: Theory and Application , Springer-Verlag, 2015). By construction it is shown that 

the QC method with dissipative interactions can be expressed as a minimization problem of a properly 

built energy potential, providing solutions equivalent to those of the virtual-power-based QC formulation. 

The theoretical considerations are demonstrated on three simple examples. For them we verify energy 

consistency, quantify relative errors in energies, and discuss errors in internal variables obtained for dif- 

ferent meshes and two summation rules. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Conventional continuum theories discretized by Finite Ele- 

ment (FE) approaches become problematic at small length-scales 

and complex material behaviours. In these cases, the underlying 

microstructure or even the atomistic crystal structure comes into 

play. This introduces nonlocality, and requires discrete simulations 

such as structural lattice computations or Molecular Statics (MS) 

in order to capture the physics properly. Discrete conservative sys- 

tems are in their full description conveniently formulated within 

a variational framework, in which their behaviour follows a mini- 

mization of a potential energy E, i.e. 

r = arg min ̂ r ∈ R 

E( ̂  r ) , (1) 

where ̂  r ∈ R denotes an arbitrary admissible vector collecting the 

positions of all lattice atoms (or particles), R denotes a configu- 

ration space, and r ∈ R a suitable minimizer, see e.g. Tadmor and 

Miller (2011) , Section 6 . For application-scale problems, the con- 
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struction of E and the solution of (1) entails excessive computa- 

tional effort s because of two fact s: 

F1. A large number of atoms and bonds contained in fully-resolved 

systems leads to considerable expenses associated with the so- 

lution of the Euler–Lagrange equations involving large-scale en- 

ergy gradients and Hessians. 

F2. For the assembly of energies, gradients, and Hessians, 1 all 

atoms or bonds have to be individually taken into account. 

The QuasiContinuum (QC) methodology, originally formulated 

by Tadmor et al. (1996) , and extended in various aspects later on, 

e.g. Curtin and Miller (2003) and Miller and Tadmor (20 02, 20 09) , 

overcomes F1 and F2 in two steps. First, interpolation , based on 

a number of selected representative atoms, or repatoms for short, 

constrains the displacements of the remaining atoms in the lattice, 

r = I ( r rep ) , (2) 

1 In MS, it is standard to employ quasi-Newton or completely Hessian-free mini- 

mization schemes, requiring only energies and gradients, cf. e.g. Tadmor and Miller 

(2011) , Section 6.2. Contrary to MS, lattice systems are usually solved using a 

Newton-Raphson scheme that requires also Hessians. 
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where r rep ∈ R rep stores the positions of all the repatoms, and R rep 

denotes a subspace of the original configuration space R. Because 

the dimension of R rep is usually much smaller than that of R, de- 

ficiency F1 is mitigated. The second involves summation , in which 

the energy and governing equations of the reduced model are de- 

termined by collecting the contributions only from so-called sam- 

pling atoms , in analogy to numerical integration of FE method. As 

a result, an approximation 

̂ E to E in (1) is minimized, which re- 

solves F2. Section 3 of this paper presents a more detailed discus- 

sion of the two QC approximation steps. Other techniques and fur- 

ther details can be found e.g. in Tadmor and Miller (2011) ; Iyer and 

Gavini (2011) and Luskin and Ortner (2013) . 

Also at length scales larger than the nanoscale (atomistic length 

scale), many materials possess discrete underlying structures—

regular, irregular, or random—at the micro- or meso-scale; typi- 

cal representatives are fibrous materials such as paper ( Kulachenko 

and Uesaka, 2012; Liu et al., 2010 ) or textile ( Potluri and Manan, 

2007 ). In such materials the bonds between the fibres (or yarns) 

take the role of atoms in atomistics. However, since the involved 

length-scales are larger, the interactions of these “atoms” (i.e. par- 

ticles) often comprise dissipative processes. Hence, the original QC 

formulation developed for purely conservative interactions cannot 

be employed. Initial theoretical developments to lift this limitation 

have been provided by Beex et al. (2014c, d) for fibre plasticity 

and bond-sliding failure. For the derivation the authors have used a 

non-variational thermodynamically-consistent framework that em- 

ploys the following virtual-power statement 

˙ ̂ r 
T 

f int = 

˙ ̂ r 
T 

f ext , ∀ ̇

 ̂ r . (3) 

In Eq. (3) , the dot denotes the derivative with respect to time; the 

vectors f int and f ext store components of resulting internal and ex- 

ternal forces. This means that the left- and right-hand sides can be 

identified as the internal and external powers; for further details 

see Beex et al. (2014c ), Section 2.1 . Let us note that in the ideal, 

smooth and consistent case, the formulation of Eq. (3) would be 

connected to the one of (1) via the relation f int − f ext = ∂ E( ̂  r ) /∂ ̂  r . 

Throughout this paper, the QC approach based on Eq. (3) will be 

referred to as the virtual-power-based QC . The virtual-power-based 

QC framework has been employed in various contexts and proven 

to be efficient while accurate, see e.g. Beex et al. (2014c) . However, 

from this formulation, it is not entirely clear whether the govern- 

ing equations derived from Eq. (3) are also energetically consistent; 

it may happen that some terms are missing, cf. e.g. Rokoš et al. 

(2016) , Table 1 , for an example in continuum gradient plasticity. 

Variational approaches may furthermore be considered to provide 

finer information about system evolution such as microstructure 

pattern formation or phase transition, see e.g. Ortiz and Repetto 

(1999) , Carstensen et al. (2002) , and Schröder and Hackl (2013) . 

In the case of adaptivity, better error estimates and mesh refine- 

ment capabilities for localized phenomena (such as damage) can 

be explored in highly nonlinear problems, cf. e.g. Radovitzky and 

Ortiz (1999) . From a broader perspective, the variational formu- 

lation offers a consistent framework convenient for, e.g., the rig- 

orous treatment of evolutions that exhibit discontinuities in time, 

investigations of structural stability using energy landscapes aris- 

ing from time-incremental minimization, or direct employment of 

non-linear optimization algorithms. Finally, the variational formu- 

lation allows us to extend the conservative QC methodology to an 

entire class of rate-independent internal mechanisms in a natural 

way. 2 

2 In principle, extensions to inertial and viscous effects are possible as well. For 

the sake of simplicity and clarity, any rate effects are omitted throughout this con- 

tribution, and the interested reader is referred to Mielke and Roubíček (2015) , Chap- 

ter 5 and references therein. 

The goal of this paper is therefore to reformulate the virtual- 

power-based QC framework for internal dissipative processes in 

terms of variational principles and show that the obtained solu- 

tions coincide for both formulations in the case of plasticity with 

isotropic hardening. To that end, a suitable potential � will be con- 

structed such that 

q ∈ arg min ̂ q ∈ Q 

�( ̂  q ) , (4) 

describing the state of the system in analogy to (1) . Here, how- 

ever, q denotes a general state variable that also includes inter- 

nal dissipative variables. Furthermore, Q is an abstract state space, 

and the inclusion sign ∈ indicates that the potential � is generally 

nonsmooth or may have multiple minima. In analogy to standard 

QC, a reduced variable q red ∈ Q red and an approximate energy ̂ �

will be introduced in order to alleviate F1 and F2. In what follows, 

the approach based on Eq. (4) will be referred to as the variational 

QC . Its construction falsifies the statement presented in Beex et al. 

(2014c ), Section 1 , claiming that the solution to Eq. (3) cannot be 

obtained by direct minimization of an energy potential. 

In order to construct the full energy potential �, we employ 

the variational formulation of rate-independent processes as intro- 

duced in an abstract setting by Mielke and Roubíček (2015) that 

is closely related to applications in continuum mechanics. Earlier 

studies were provided e.g. by Francfort and Marigo (1993) , Han 

and Reddy (1995) , Francfort and Marigo (1998) , Ortiz and Stainier 

(1999) , Charlotte et al. (20 0 0) , Hackl and Fischer (2008) , Conti and 

Ortiz (2008) , and Kochmann and Hackl (2010) . Section 2 of this 

paper first briefly introduces definitions and basic principles of the 

theory. Second, the approach is reformulated in the particular con- 

text of discrete lattice systems. 

The governing equations associated with (4) will be addressed 

in Section 4 , where we recall the Alternating Minimization (AM) 

method, see also Bourdin et al. (20 0 0) . Since the energy poten- 

tial � for plasticity is nonsmooth, we will also briefly discuss the 

return-mapping algorithm suitable for its minimization. 

Before closing this contribution by a summary and conclu- 

sions in Section 6 , we perform numerical tests on three bench- 

mark examples presented in Section 5 , two of which have been 

adopted from Beex et al. (2014c) , Section 4 , and Beex et al. (2015b ), 

Section 4.2 . We demonstrate that both approaches, represented 

by Eqs. (3) and (4) , lead to energetically-consistent solutions for 

the exact and central summation rules presented in Beex et al. 

(2011) and Beex et al. (2014b ). The third example then presents 

both global as well as local quantities for an indentation test. Fi- 

nally, we show that despite the significant dimension reduction 

and time savings achieved by the QC method, the obtained errors 

in stored and dissipated energies due to interpolation and sum- 

mation are rather low: the relative errors in energies do not ex- 

ceed 4% , while the simulation time is decreased by a factor of 4–

30 depending on the triangulation, loading, and geometry. 

2. Rate-Independent variational plasticity 

2.1. General considerations 

The variational formulation for rate-independent processes 

comprises several steps and relies on two principles (S) and (E) , 

which are described below (for details see Mielke, 2002; Mielke 

and Theil, 2004; Mielke, 2004 and Mielke and Roubíček 2015 ). The 

state of the system within a fixed time horizon [0, T ] is described 

in terms of a non-dissipative variable r (t) ∈ R, and a dissipative 

component z (t) ∈ Z . The latter specifies all irreversible processes 

at time t ∈ [0, T ], where t denotes a pseudo-time parametrizing 

the quasi-static evolution process. The state of the system is fully 

characterized by the state variable q (t) = ( r (t ) , z (t )) ∈ Q = R × Z . 
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