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a b s t r a c t 

Transversely isotropic composites consisting of an elastic matrix reinforced by unidirectional elastic fibres 

of circular cross-section are studied. The displacement and traction vectors at the interface between a 

fibre and the matrix are assumed to be simultaneously discontinuous and governed by a general isotropic 

imperfect interface model. It is first proved that piecewise uniform strain fields transversely isotropic 

about the fibre direction can be generated inside such a composite. The existence of these piecewise 

uniform strain fields is then exploited so as to derive two exact connections between the five effective 

elastic moduli of the composite. These two exact connections are finally shown to cover as particulars 

cases all the relevant results reported in the literature for fibre-reinforced composites. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

In a famous work ( Hill, 1964 ), Hill proved that two exact con- 

nections exist between the five effecti ve elastic moduli of any 

transversely isotropic composite consisting of a matrix reinforced 

by unidirectional straight fibres. The usefulness of this elegant re- 

sult is at least twofold. First, it reduces the number of the inde- 

pendent effective moduli of such a composite from five to three. 

Second, it can serve as a benchmark for testing the consistency 

and correctness of homogenization techniques and micromechani- 

cal methods elaborated for determining the effective elastic moduli 

of the fibre-reinforced composites in question (see, e.g., Hashin and 

Rosen, 1964; Christensen and Lo, 1979; Benveniste, 1987; Bonnet, 

2007 ). 

In the aforementioned work of Hill (1964) , the interface be- 

tween the matrix and a fibre was assumed to be perfect in the 

sense that both the displacement and traction vectors are continu- 

ous across the interface. However, in a variety of situations of the- 

oretical and/or practical interest, the perfect interface assumption 

fails to hold. For example, in the case of fibrous nanocomposites, 

the interface stress may be so important that the traction vector 

is no longer continuous across the interfaces (see, e.g., Chen et al., 

2007; Le Quang and He, 2007; 2008; Mogilevskaya et al., 2008; 

2010a; 2010b ). 
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Some authors (see, e.g., Chen and Dvorak, 2006; Duan and Kar- 

ihaloo, 2007 ) have extended the aforementioned result of Hill to 

accounting for imperfect interfaces. However, in all the extended 

results reported in the literature, the imperfect interface models 

adopted are the spring-layer model and/or the membrane-type (or 

Gurtin-Murdoch) one. In the former, the traction vector is continu- 

ous across an interface while the displacement vector suffers from 

a jump across the same interface, which is usually assumed to be 

proportional to the traction vector. In the latter, the displacement 

vector is continuous across an interface whereas the traction vector 

exhibits a jump across the same interface, which has to be com- 

patible with the generalized Laplace-Young equation. It seems that, 

in the general case where both the displacement and traction vec- 

tors suffer jumps across an interface, no results have been reported 

on the connections between the effective elastic moduli of fibrous 

composites. The present work aims to provide such results. 

In a series of papers (see, e.g., Bövik, 1994; Hashin, 2002; Ben- 

veniste, 2006; Gu and He, 2011 ) it has been demonstrated that 

both the spring-layer and membrane-type models correspond in 

reality to the two extreme particular cases of a general linear 

imperfect interface model derived by considering two physically 

sound configurations and requiring them to be equivalent to within 

a tolerable error. Precisely, the starting configuration is a three- 

phase one where a linearly elastic interphase of small uniform 

thickness h is located between, and perfectly bonded to, two lin- 

early elastic phases. To facilitate our explanation, let us denote by 

S 1 and S 2 the perfect interfaces between these two phases and 

the interphase. The final configuration is a two-phase one where 
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the interphase has been replaced by an imperfect interface of null 

thickness located at the middle surface S of the interphase and the 

two phases have been extended, respectively, from S 1 and S 2 to 

S . The displacement and traction jumps across the imperfect in- 

terface S in the final two-phase configuration, characterizing the 

general linear imperfect interface model in question, are required 

to be such that the displacement and traction jumps across the in- 

terphase in the starting three-phase configuration are, to within an 

error of order 0( h 2 ), equal to the ones across the zone bounded by 

the fictitious surfaces S 1 and S 2 comprising the imperfect interface 

S in the final two-phase configuration. More details can be found 

in the paper of Gu and He (2011) . The general linear elastic imper- 

fect interface model thus obtained reduces to the spring-layer or 

membrane-type model according as the interphase is much softer 

or much stiffer than the connected neighboring phases. Moreover, 

it is applicable to all the intermediate situations which are phys- 

ically out of the scope of the spring-layer and membrane-type 

models. 

The present work aims mainly at further extending Hill’s re- 

sult to fibre-reinforced composites where the matrix-fibre inter- 

faces are imperfect and characterized by the general linear imper- 

fect interface model described above. The exact connections de- 

rived for the effective elastic moduli include as special cases all the 

relevant results reported in the literature. In particular, we retrieve 

the results for fibrous nanocomposites by requiring the stiffness of 

an interphase to be much higher than the ones of the matrix and 

fibrous phases. It is worth emphasizing that all the parameters in- 

volved in our results bear clear physical and/or geometrical inter- 

pretations. 

The following sections are organized as follows. In Section 2 , 

the fibre-reinforced composites under consideration are speci- 

fied by describing their microstructure, presenting their local and 

global constitutive laws and compactly formulating the general 

elastic isotropic imperfect interface model adopted. Section 3 is 

dedicated to showing that piecewise uniform strain fields can be 

generated inside a fibre-reinforced composite with general elas- 

tic isotropic interfaces once the parameters of a boundary load- 

ing transversely isotropic about the fibre direction satisfy some ap- 

propriate relations. In Section 4 , the existence of piecewise uni- 

form strain fields is exploited so as to establish two exact connec- 

tions between three of the five effecti ve elastic moduli of the fibre- 

reinforced composite under consideration. These two exact connec- 

tions depend, in particular, on the size of the fibres. In Section 5 , 

to illustrate the versatility, and also to check the correctness, of our 

results, we show that they reduce to the corresponding results rel- 

ative to the spring-layer and membrane interface models when the 

interfacial material parameters are properly chosen. In Section 6 , a 

few concluding remarks are provided. 

2. Fibre-reinforced composites with general linear imperfect 

interfaces 

Consider a composite material made of a linearly elastic 

isotropic matrix in which linearly elastic isotropic fibres are em- 

bedded and aligned along one direction ( Fig. 1 ). Let us introduce 

a three-dimensional (3D) orthonormal basis { e 1 , e 2 , e 3 } such that 

the unit vector e 3 is oriented along the direction of the fibres. In 

what follows, the fibres will be referred to as phase 1 and the ma- 

trix as phase 2. We make the assumption that the distribution of 

the fibres in the matrix is statistically homogeneous in any plane 

transverse to the fibre direction e 3 and that no direct contact takes 

place between any two fibres. Denote by �i the interface between 

the matrix and a generic fibre, say fibre i , and symbolize by n the 

unit vector normal to �i and oriented from the fibre into the ma- 

trix. 

By assumption, the mechanical behavior of the matrix and fibre 

phases is characterized by the isotropic Hooke law: 

σ(i ) = L 

(i ) ε 

(i ) , L 

(i ) = 3 k (i ) 
(

1 

3 

I � I 

)
+ 2 μ(i ) 

(
I − 1 

3 

I � I 

)
. (1) 

Above, the superscript i equals 1 for the fibre phase and 2 for the 

matrix phase; σ( i ) corresponds to the Cauchy stress tensor of phase 

i which has to satisfy the equilibrium equation 

div σ(i ) = 0 

without body forces; ε ( i ) is the infinitesimal strain tensor derived 

from the displacement field u 

( i ) of phase i by 

ε 

(i ) = 

1 

2 

[ 
∇ u 

(i ) + 

(∇ u 

(i ) 
)T 

] 
; (2) 

L 

(i ) represents the elastic isotropic stiffness tensor of phase i . In 

the expression of L 

(i ) , k ( i ) and μ( i ) are the bulk and shear moduli, 

I is the 3D second-order identity tensor, � represents the usual 

tensor product, and I symbolizes the fourth-order identity ten- 

sor for the space of second-order symmetric tensors. With the 

aid of the Kronecker tensor product � defined by 
(
X �Y 

)
i jkl 

= (
X ik Y jl + X il Y jk 

)
/ 2 for any two second-order tensors X and Y , we 

indeed have I = I �I . 

Preliminarily, we also introduce some operators relative to the 

interface �i between fibre i and the matrix. First, the normal and 

tangential projection operators of second order, N and T , are de- 

fined by 

N = I − T = n � n , (3) 

while the ones of fourth order, N and T , are given by 

T = I − N = T �T . (4) 

Next, we define the interfacial jump [[ • ]] , the interfacial average 

〈 • 〉 and the surface divergence div s ( • ) through 

[ [ •] ] = •( + ) − •( −) , 〈 •〉 = 

(
•( + ) + •( −) 

)
/ 2 , (5) 

div s ( •) = ∇ ( •) : T . (6) 

In the above first two definitions, •( + ) and •( −) denote a quantity 

• evaluated at the interface �i but on the respective sides of the 

matrix and fibre. 

The interface �i , assumed to be imperfect, is described by the 

general linear elastic isotropic imperfect interface model compactly 

formulated in Gu et al. (2014) . As explained in the introduction, 

this model is derived through substituting an imperfect interface 

of null thickness for a linearly elastic isotropic interphase, called 

phase 0, of small uniform thickness h perfectly bonded to the fibre 

and matrix. Precisely, the imperfect interface model is character- 

ized by the following two jumps across �i : 

[ [ u ] ] = 

h 

2 

[ c 1 ( T : 〈 ε 〉 ) n + ( c 2 N + c 3 T ) 〈 t 〉 ] ; (7) 

[ [ t ] ] = −div s σs (8) 

with 

σs = − h 

2 

[ c 1 ( n · 〈 t 〉 ) T + ( c 4 T + c 5 T � T ) 〈 ε 〉 ] . (9) 

In the above expression, σs represents the interfacial (or mem- 

brane) stress tensor which is two-dimensional and tangent to �i , 

t = σn corresponds to the traction vector acting on the fibre or 

matrix side of �i , and c j ( j = 1 , . . . , 5 ) are the interfacial material 

parameters determined by the bulk and shear moduli, k ( i ) and μ( i ) 

( i = 0 , 1, 2), of the interphase, fibre and matrix phases: 

c 1 = 

l ′ (2) 

n 

′ (2) 
+ 

l ′ (1) 

n 

′ (1) 
− 2 

l ′ (0) 

n 

′ (0) 
, c 2 = 

2 

n 

′ (0) 
− 1 

n 

′ (2) 
− 1 

n 

′ (1) 
, 
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