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a b s t r a c t 

Numerous papers deal with the Equivalent Plate Model (EPM) for corrugated panels. Comparison of pub- 

lished formulas for the four relevant equivalent bending stiffnesses D 

eq 
11 

, D 

eq 
22 

, D 

eq 
66 

, and D 

eq 
12 

revealed am- 

biguities: Three different formulas were found for D 

eq 
22 

, which describes the bending of the ridges and 

troughs; for D 

eq 
66 

two ‘competing’ formulas emerged. Expressions not converging to the flat-plate values in 

the limit of vanishing corrugation height were discarded. All discussed formulas are written in a uniform 

notation for general one-dimensionally periodic shapes. Formulas derived for isotropic panel materials 

were generalized to the orthotropic case. In order to resolve the ambiguities and assess the EPM with 

regard to its range of applicability, vibration modes of six rectangular corrugated panels were measured. 

While agreement with numerical results obtained with COMSOL was fair, the EPM predictions of natu- 

ral frequencies were satisfactory only for low-order modes. Finally, equivalent bending stiffnesses were 

determined numerically from COMSOL results for a few low-order modes by inverse methods. Thus the 

ambiguities with regard to D 

eq 
22 

and D 

eq 
66 

could be resolved. However, the D 

eq 
12 

values determined numeri- 

cally came out significantly larger than the EPM prediction, in particular for stronger corrugations. Even 

though this discrepancy had little effect on the natural frequencies tested in the present paper, it remains 

a theoretical challenge. 

© 2016 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ). 

1. Introduction 

For a long time the bending of corrugated panels is conve- 

niently described by a model in which the corrugated panel is re- 

placed by an ‘equivalent’ flat homogeneous orthotropic thin plate. 

The bending properties of the corrugated panel are characterized 

and theoretically approximated by ‘equivalent bending stiffnesses’. 

Numerous papers were published over the course of decades ad- 

dressing various corrugation profiles like sinusoidal, trapezoidal or 

with circular segments. Different approaches have been used and 

partly differing results were obtained. It is not intended to pro- 

vide a comprehensive literature review. Rather, a synopsis is pre- 

sented in Section 2 with those results considered most relevant. 

They are ‘translated’ into a unique formulation for general one- 

dimensionally periodic shapes. Some explicit expressions for sinu- 

soidal and trapezoidal shapes are given in the Appendix. Further- 

more, derivations assuming isotropic panel materials were general- 
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ized to orthotropic panel materials. This literature evaluation ends 

up with undisputed expressions for two of the equivalent bending 

stiffnesses and with two or three differing expressions for the two 

remaining stiffnesses. 

The Equivalent Plate Model (EPM) was assessed by studying 

the natural frequencies of free rectangular panels with sinusoidal 

or symmetric trapezoidal corrugation both experimentally and nu- 

merically using FEM. Section 3 presents results for three sinusoidal 

and three trapezoidal panels. The fair agreement between mea- 

sured natural frequencies and FEM values indicates that (i) the ex- 

perimental setup was close to the intentions and (ii) the FEM mod- 

eling using thin-shell elements was appropriate. Thus, these re- 

sults can be considered a reasonable reference to judge the equiva- 

lent orthotropic-thin-plate model. The EPM predictions – the men- 

tioned ambiguities are resolved in the following section – generally 

underestimate the reference values except for low-order modes. 

In Section 4 two inverse methods for obtaining equivalent stiff- 

nesses from measured or calculated vibration modes are applied 

to generate stiffness values for comparison with the EPM ex- 

pressions. Naturally, with the results of Section 3 in mind, low- 

order modes were used. In this way convincing agreement was 
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Fig. 1. Geometric description of corrugation profile. (See the web version of this 

article for all figures in color.) 

obtained for three of the four equivalent stiffnesses, and the ambi- 

guities could be removed. However, a significant discrepancy was 

observed in case of one of the equivalent stiffnesses. This is dis- 

cussed in Section 5 , which also summarizes the EPM formulas 

used in Section 3 . Concluding remarks address the applicability 

from a somewhat more general perspective. A preliminary account 

of parts of the present work was presented at Forum Acusticum 

( Aoki and Maysenhölder, 2014 ). 

2. Equivalent plate model (EPM) 

2.1. Geometric corrugation description 

Fig. 1 shows the cross-section of a unit cell of a singly curved 

periodic panel and the variables used for its geometric description. 

L 0 is the period. The x-axis runs across the ridges and troughs, 

while the y-axis runs along them. It is understood that the x-axis 

passes through the centroid of the unit cell and hence coincides 

with the neutral axis ( Hansen, 1993 ). The corrugation profile is 

defined by the z-coordinate of the middle surface, z m 

, as a func- 

tion of x . The corrugation height, H 0 , is taken as the difference be- 

tween the maximum and minimum of z m 

( Bartolozzi et al., 2014 ). 

It is assumed that the thickness of the panel, h , is everywhere the 

same. It is measured perpendicular to the middle surface giving 

rise to the bottom and top surfaces with z-coordinates z b and z t , 

which enclose the middle surface halfway in between. The differ- 

ence z t ( x ) −z b ( x ) is greater than or equal h ; equality applies at po- 

sitions x where the slope of z m 

is zero (provided the height H 0 

is not too big). More precisely, the outer surfaces may be defined 

– in the language of integral geometry – via Minkowski addition 

( Chiu et al., 2013 ) of the line z m 

( x ) and a disk with radius h /2. This 

makes the definition unique also for shapes with sharp bends like 

trapezoidal ones. 

An important quantity appearing in the formulas for the equiv- 

alent stiffnesses is the ratio of the arc-length of the middle-surface 

in one period, L s , to the period L 0 : 

L s 

L 0 
= 

1 

L 0 

∫ L 0 

0 

√ 

1 + 

(
d z m 

d x 

)2 

d x 

= 

1 

2 π

∫ 2 π

0 

√ 

1 + 4 π2 

(
H 0 

L 0 

)2 
(

d ζm 

d ϕ 

)2 

d ϕ (1) 

After the second equality sign normalized x- and z-coordinates 

have been introduced via ϕ =2 π x / L 0 (with z m 

( ϕ)=z m 

( x ) under- 

stood) and ζ =z / H 0 . By this means it is immediately obvious that 

in the limit of infinite period L 0 , with shape ζ m 

( ϕ) and height H 0 

kept constant, the ratio L s / L 0 becomes unity. In the sequel this nor- 

malized representation will lead to compact expressions which fa- 

cilitate the identification of dependencies and relations. The func- 

tions z b ( x ) and z t ( x )are in general rather complicated and cannot 

always be expressed explicitly (see Appendix). 

Eq. (1) implies single-valued functions z m 

( x ) or ζ m 

( ϕ); this 

excludes re-entrant forms dealt with, e.g., by Kress and Win- 

kler (2010) . Similarly, ζ b ( ϕ) and ζ t ( ϕ) should be single-valued ev- 

erywhere as well, i.e. the thickness h must be sufficiently small. 

Also, shapes like corrugated cylinders are not considered in this 

paper, which is confined to ‘globally’ flat panels and – in the ex- 

amples – to symmetric shapes with a center of inversion at x c 
and z m 

( −x + x c ) = −z m 

( x −x c ), in particular sinusoidal and symmet- 

ric trapezoidal shapes. 

2.2. Bending of orthotropic thin plates 

For free vibration of orthotropic homogeneous thin (flat) plates 

the differential equation for the displacement w in the z -direction 

due to bending reads ( Lekhnitskii, 1984 , Section 91) 

μ ẅ = D 11 
∂ 4 w 

∂ x 4 
+ 2 ( D 12 + 2 D 66 ) 

∂ 4 w 

∂ x 2 ∂ y 2 
+ 4 D 16 

∂ 4 w 

∂ x 3 ∂y 

+4 D 26 
∂ 4 w 

∂ x∂ y 3 
+ D 22 

∂ 4 w 

∂ y 4 
(2) 

with the areal mass density μ, the product of the density ρ and 

the thickness h . When the orthotropy axes are aligned with the x- 

and y-axes, D 16 and D 26 are equal to zero. The other four bending 

stiffnesses are given in terms of the material properties, Young’s 

moduli E 11 and E 22 , Poisson’s ratios ν12 and ν21 , and shear modu- 

lus G 12 ( Lekhnitskii, 1984 , Section 61): 

D 11 = 

E 11 

1 − ν12 ν21 

I , D 22 = 

E 22 

1 − ν12 ν21 

I , 

D 12 = ν12 D 22 = ν21 D 11 , D 66 = G 12 I, (3) 

where I = h ³/12 denotes the second moment of inertia per unit 

length. For infinite plates the combination D 12 + 2 D 66 can be con- 

sidered as a total torsional stiffness ( Leissa, 1993 , Section 9.2; 

Timoshenko and Woinowsky-Krieger, 1959 , chapter 11, Eq. (212)- 

e). This implies that the number of independent elastic parame- 

ters reduces from nine in the orthotropic solid to three in the or- 

thotropic thin plate. However, in boundary conditions, in partic- 

ular in those involving free edges, D 12 and D 66 occur separately 

( Dickinson, 1978 ). Therefore all four stiffnesses D ij of Eq. (3) have 

to be dealt with for an equivalent thin plate model which is appli- 

cable to finite corrugated panels, too. In the following this model is 

called Equivalent Plate Model and sometimes abbreviated by EPM 

(in the style of EFM for the Equivalent Fluid Model for fluid-filled 

porous structures). 

Such a plate model should allow a reliable prediction of the 

‘global’ behavior of the corrugated panel, be it infinite or finite, us- 

ing an ‘equivalent areal mass density’ μeq and ‘equivalent bending 

stiffnesses’ D 

eq 
i j 

. For the sake of brevity and clarity these ‘equiva- 

lent’ quantities are normalized by their flat-plate analogs: 

ˆ μeq = 

μeq 

μ
, ˆ D 

eq 
i j 

= 

D 

eq 
i j 

D i j 

. (4) 

Analytical determinations of the D 

eq 
i j 

which use the right-hand 

sides of Eq. (3) imply additional equivalent quantities (cf. Yokozeki 

et al., 2005; Isaksson et al., 2007; Bartolozzi et al., 2014 ): 

ˆ E eq 
ii 

= 

E eq 
ii 

E ii 
, ˆ νeq 

i j 
= 

νeq 
i j 

νi j 

, ˆ G 

eq 
12 

= 

G 

eq 
12 

G 12 

, ˆ I eq = 

I eq 

I 
. (5) 

Consequently, 

ˆ D 

eq 
12 

ˆ D 

eq 
11 

= 

D 

eq 
12 

ν21 D 

eq 
11 

= 

νeq 
21 

ν21 

= ˆ νeq 
21 

, 
ˆ D 

eq 
12 

ˆ D 

eq 
22 

= ˆ νeq 
12 

. (6) 

One may even define a normalized equivalent thickness ˆ h eq = 

h eq /h , which, with I = h 3 /12 and I eq = ( h eq ) 3 /12, always results in 

ˆ h eq = 

3 
√ 

ˆ I eq . 
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