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a b s t r a c t 

Closed-form expressions for the Cauchy stress, microstress, moment-stress, and the torque-twist rela- 

tionship in a twisted hollow circular tube are derived for a rigid-plastic strain-gradient plasticity. This is 

accomplished for any of the gradient-enhanced effective plastic strain measures from a considered broad 

class of these measures. Numerical results are given and discussed for the two most frequently utilized 

measures and for the three adopted stress-strain relationships modeling the uniaxial tension test. Solid 

circular rods and thin-walled tubes are both considered. The existence of the line forces is also discussed 

from the standpoint of the basic equilibrium considerations and the principle of virtual work. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

In the wake of Fleck and Hutchinson (1993) and Fleck et al. 

(1994) analyzes of the effects of strain-gradient on plastic response 

of materials at micron scale, there has been a great amount of re- 

search devoted to the development of what is now known as the 

strain-gradient plasticity. The representative references include, in- 

ter alia, the contributions by Fleck and Hutchinson (1997, 2001) ; 

Nix and Gao (1998) ; Gao et al. (1999) ; Huang et al. (20 0 0, 20 04) ; 

Hutchinson (20 0 0, 2012) ; Gurtin (20 02, 20 03, 20 04) ; Gudmundson 

(2004) ; Anand et al. (2005a) ; Gurtin and Anand (2005a, 2005b, 

20 09) ; Bardella (20 06, 20 07) ; Fleck and Willis (20 09a, 20 09b) ; 

Polizzotto (2009) ; Voyiadjis et al. (2010) ; Dahlberg et al. (2013) ; 

Nielsen and Niordson (2014) ; Fleck et al. (2014, 2015) ; Bardella and 

Panteghini (2015) ; Anand et al. (2015b) . In most of these works the 

material length parameter is introduced in the theory through the 

definition of the gradient-enhanced effective plastic strain, which 

combines the contributions from the effective plastic strain and the 

effective plastic strain-gradient. Physically, the size-dependence in 

non-uniform deformation problems at micron scale has been at- 

tributed to the existence of large gradients of plastic strain and the 

associated network of the so-called geometrically necessary dislo- 

cations. The increase of the plastic collapse limit load with the de- 

creasing specimen size was pointed out and elaborated upon by 

Polizzotto (2010, 2011) . 

The objective of the present paper is to derive the complete 

stress field (microstress, moment-stress, and the Cauchy stress) 
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and the torque-twist relationship for a twisted hollow circular tube 

made of a rigid-plastic material by using any of the gradient- 

enhanced effective plastic strain measures from a wide class of 

these measures frequently adopted in the literature. Special atten- 

tion is given to measures defined by the linear and harmonic sum 

of the effective plastic strain and its gradient, scaled by the ma- 

terial length. The torsion testing of thin wires was a benchmark 

problem demonstrating the size effect at micron scale ( Fleck et al., 

1994 ), which was further studied, using different constitutive mod- 

els, by many investigators, including ( Fleck and Hutchinson, 1997; 

Fleck et al., 2014; Huang et al., 20 0 0; Gudmundson, 20 04; Voyiad- 

jis and Abu Al-Rub, 2005; Idiart et al., 2009; Polizzotto, 2011; Liu 

et al., 2013; Lubarda, 2016a ). The general results derived in this pa- 

per hold for an arbitrary expression representing the stress-plastic 

strain response in simple tension, although numerical evaluations 

are performed by adopting three specific expressions. 

2. Gradient-enhanced effective plastic strain 

In a simple formulation of the deformation theory of strain- 

gradient plasticity ( Hutchinson, 2012 ), the specific plastic work 

(per unit volume) is expressed in terms of the gradient-enhanced 

effective plastic strain E p by 

w p (E p ) = 

∫ E p 

0 

σ0 (εp ) d εp , (1) 

where σ0 = σ0 (εp ) represents the stress-strain curve from the uni- 

axial tension test. The expression (1) implies that the plastic work 

needed to deform the material element in the presence of strain- 

gradients is equal to that at the same strain in the absence of 

gradients. 
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A wide class of the gradient-enhanced effective plastic strain 

measures, each involving one material length parameter l , is ( Evans 

and Hutchinson, 2009; Fleck and Hutchinson, 1997 ) 

E p = 

(
e s p + l s g s p 

)1 /s 
, (s ≥ 1) , (2) 

where e p is the effective plastic strain and g p the effective plastic 

strain-gradient, defined by 

e p = 

(
2 

3 

εp 
i j 
εp 

i j 

)1 / 2 

, g p = 

(
2 

3 

εp 

i j,k 
εp 

i j,k 

)1 / 2 

. (3) 

The two most frequently used measures are associated with the 

choices s = 1 and s = 2 , which specify E p as either a linear or har- 

monic sum of e p and lg p , 

E p = e p + lg p , E p = 

(
e 2 p + l 2 g 2 p 

)1 / 2 
. (4) 

In general, when fitting experimental data, a different value of l 

may be needed for each choice of s . The choice s = 2 is particu- 

lary appealing from the mathematical point of view and was used 

in most studies of the strain-gradient plasticity, although in some 

studies the choice s = 1 was found to be more attractive ( Evans 

and Hutchinson, 2009 ). 

The plastic strain is taken to be 

εp 
i j 

= e p m i j , m i j = 

3 

2 

σ ′ 
i j 

σeq 
, (5) 

where the equivalent stress is 

σeq = 

(
3 

2 

σ ′ 
i j σ

′ 
i j 

)1 / 2 

, (6) 

with the prime designating a deviatoric part. The total infinitesimal 

strain is 

εi j = εe 
i j + εp 

i j 
, (7) 

with the elastic component related to the Cauchy stress by the 

isotropic generalized Hooke’s law 

εe 
i j = 

1 

2 μ
σ ′ 

i j + 

1 

9 κ
σkk δi j , σ ′ 

i j = σi j −
1 

3 

σkk δi j . (8) 

The shear and bulk moduli are μ and κ . 

3. Work-conjugates to plastic strain and its gradient 

It is assumed that plastic strain-gradients εp 

i j,k 
contribute to the 

work per unit volume. The work conjugate to εp 

i j,k 
is the moment- 

stress τi jk = τ jik . The work-conjugate to εp 
i j 

is the microstress q i j = 

q ji , such that ( Gudmundson, 2004 ) 

˙ w p = q i j ˙ ε
p 
i j 

+ τi jk ˙ ε
p 

i j,k 
. (9) 

To identify q ij and τ ijk , we reconcile (9) with the rate of plastic 

work expression 

˙ w p = σ0 (E p ) ̇ E p , (10) 

following from (1) . Since, by the differentiation of (2) and (3) , 

˙ E p = E 1 −s 
p 

(
e s −1 

p ˙ e p + l s g s −1 
p ˙ g p 

)
, (11) 

and 

˙ e p = 

2 

3 e p 
εp 

i j 
˙ εp 
i j 

, ˙ g p = 

2 

3 g p 
εp 

i j,k 
˙ εp 

i j,k 
, (12) 

we obtain 

˙ E p = 

2 

3 

E 1 −s 
p 

(
e s −2 

p εp 
i j 

˙ εp 
i j 

+ l s g s −2 
p εp 

i j,k 
˙ εp 

i j,k 

)
. (13) 

The substitution of (13) into (10) and the comparison with (9) es- 

tablishes, up to their workless terms, the work-conjugates 

q i j = 

2 

3 

σ0 (E p ) 

E s −1 
p 

e s −2 
p εp 

i j 
, τi jk = 

2 

3 

l s 
σ0 (E p ) 

E s −1 
p 

g s −2 
p εp 

i j,k 
. (14) 

Clearly, q ii = 0 and τiik = 0 , because εp 
ii 

= 0 . Expressions (14) can 

also be deduced directly from q i j = ∂ w p /∂ ε
p 
i j 

= σ0 ∂ E p /∂ ε
p 
i j 

and 

τi jk = ∂ w p /∂ ε
p 

i j,k 
= σ0 ∂ E p /∂ ε

p 

i j,k 
, as done by Liu et al. (2013) . 

In particular, for s = 1 , the microstress and the moment-stress 

are 

q i j = 

2 

3 

σ0 (E p ) 

e p 
εp 

i j 
, τi jk = 

2 

3 

l 
σ0 (E p ) 

g p 
εp 

i j,k 
, (15) 

while for s = 2 , 

q i j = 

2 

3 

σ0 (E p ) 

E p 
εp 

i j 
, τi jk = 

2 

3 

l 
σ0 (E p ) 

E p 
εp 

i j,k 
. (16) 

4. Principle of virtual work 

The principle of virtual work of strain-gradient plasticity reads 

( Gudmundson, 20 04; Gurtin and Anand, 20 05a, 20 05b; Fleck et al., 

2014 ) ∫ 
V 

(σi j δε
e 
i j + q i j δε

p 
i j 

+ τi jk δε
p 

i j,k 
)d V = 

∫ 
S 

(T i δu i + t i j δε
p 
i j 
)d S , (17) 

provided that the equations of equilibrium hold 

σi j, j = 0 , τi jk,k + σ ′ 
i j − q i j = 0 , (18) 

and the traction-stress relations 

T i = σi j n j , t i j = τi jk n k (19) 

between the traction vector T i and the Cauchy stress tensor σ ij , 

and between the (deviatoric) moment-traction tensor t ij are the 

moment-stress tensor τ ijk . The components of the outward unit 

vector, orthogonal to the considered surface element, are denoted 

by n i . The displacement components are u i . 

In the case of a rigid-plastic material, the principle of virtual 

work reads ∫ 
V 

(
q ′ i j δε

p 
i j 

+ τ ′ 
i jk δε

p 

i j,k 
+ 

1 

3 

σii δε
p 
j j 

)
d V = 

∫ 
S 

[
ˆ T i δu i + 

ˆ R i D (δu i ) 
]
d S . 

(20) 

The three independent traction components ˆ T i are 

ˆ T i = T̄ i − n i n j R j (D k n k ) − D i (n j R j ) , (21) 

with 

T̄ i = T i + R i (D j n j ) − D j t i j , T i = σi j n j , (22) 

while the two independent higher-order traction components ˆ R i , 

tangential to S , are 

ˆ R i = R i − n i n j R j , R i = t i j n j , (23) 

with t i j = τ ′ 
i jk 

n j n k . The utilized surface gradient operator is defined 

by D i = (∂ /∂ x i ) − n i D, where D is the projection of the gradient 

operator to the surface normal, D = n j (∂ /∂ x j ) . The spherical com- 

ponent of Cauchy stress σ ii /3 was used in (20) as the Lagrange 

multiplier, associated with the incompressibility constraint εp 
j j 

= 0 

( Fleck and Willis, 2009b ). 

If the surface S has edges, an additional term appears on the 

right-hand side of (20) , given by ∑ 

n 

∮ 
C n 

p i δu i d C n , (24) 

where p i are the line forces along the edges C n of the smooth parts 

S n of a piece-wise smooth surface S . For example, the line force 

along an edge formed by the intersection of two smooth surface 

segments S (1) and S (2) is 

p i = 

[
τ ′ 

i jk k 
(1) 
j 

n 

(1) 
k 

− k (1) 
i 

τ ′ 
jkl n 

(1) 
j 

n 

(1) 
k 

n 

(1) 
l 

]
+ 

[
τ ′ 

i jk k 
(2) 
j 

n 

(2) 
k 

− k (2) 
i 

τ ′ 
jkl n 

(2) 
j 

n 

(2) 
k 

n 

(2) 
l 

]
, (25) 

Please cite this article as: V.A. Lubarda, Rigid-plastic torsion of a hollow tube in strain-gradient plasticity, International Journal of Solids 

and Structures (2016), http://dx.doi.org/10.1016/j.ijsolstr.2016.07.029 

http://dx.doi.org/10.1016/j.ijsolstr.2016.07.029


Download English Version:

https://daneshyari.com/en/article/4922728

Download Persian Version:

https://daneshyari.com/article/4922728

Daneshyari.com

https://daneshyari.com/en/article/4922728
https://daneshyari.com/article/4922728
https://daneshyari.com

