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a b s t r a c t 

A unified method to evaluate the fundamental solutions for generally anisotropic multi-field materials 

is presented. Based on the relation between the Rayleigh expansion and the three-dimensional Fourier 

representation of a homogenous partial differential operator, the proposed technique allows to obtain the 

fundamental solutions and their derivatives up to the desired order as convergent series of spherical har- 

monics. For a given material, the coefficients of the series are computed only once, and the derivatives of 

the fundamental solutions are obtained without any term-by-term differentiation, making the proposed 

approach attractive for boundary integral formulations and efficient for numerical implementation. Use- 

ful general relationships for the computation of derivatives of various order of the fundamental solutions 

are presented. Furthermore, no particular treatment is needed for mathematically degenerate cases. The 

fundamental solutions of the Laplace equation and isotropic elastic solids are exactly retrieved as special 

cases. Numerical results are presented to demonstrate the accuracy of the approach for isotropic elastic, 

generally anisotropic elastic, transversely isotropic and generally anisotropic piezo-electric and magneto- 

electro-elastic materials. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Fundamental solutions, or Green’s functions, are essential to the 

solution of many boundary value problems in engineering ( Mura, 

2013 ) and represent the key ingredient in boundary integral for- 

mulations ( Aliabadi, 2002; Banerjee and Butterfield, 1981; Wro- 

bel, 2002 ). Simple and closed form expressions are available only 

for simple cases, such as potential problems or isotropic elasticity. 

Therefore, the development of efficient schemes for computing the 

fundamental solutions of generic linear systems of partial differen- 

tial equations (PDEs) still represents a challenge of great scientific 

interest. 

In the field of materials engineering, several works have been 

devoted to finding the displacements field ( Fredholm, 1900; Lif- 

shitz and Rozentsveig, 1947 ) and its derivatives ( Barnett, 1972 ) due 

to a point force in a three-dimensional anisotropic elastic medium. 

The formal expression of the fundamental solutions of a second 

order partial differential operator has been classically obtained 

using either Fourier or Radon transforms, which lead to expres- 

sions in terms of a contour integral on a unit circle ( Synge, 1957 ). 
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By using suitable variable transformations, several researchers re- 

placed the contour integral by an infinite line integral ( Wang, 

1997 ), whose solution has been obtained by means of the Cauchy’s 

residue theorem in terms of the Stroh eigenvalues ( Lee, 2003; Sales 

and Gray, 1998; Wu, 1998 ) or eigenvectors ( Malen, 1971; Naka- 

mura and Tanuma, 1997 ). However, when the Stroh’s eigenvalues 

or eigenvectors approach is used, the issue of degeneracy needs 

to be robustly addressed, in particular when such an approach is 

used in a numerical code, e.g. in boundary element implementa- 

tions. Non-degenerate cases were first studied by Dederichs and 

Leibfried ( Dederichs and Leibfried, 1969 ) for cubic crystals. Phan 

et al. (20 04; 20 05) presented a technique to compute the funda- 

mental solutions of a 3D anisotropic elastic solid and their first 

derivatives in presence of multiple roots and using the residue ap- 

proach. Shiah et al. (2008) used the spherical coordinates differen- 

tiation to obtain the explicit expressions of the derivatives of the 

fundamental solutions for an anisotropic elastic solid up to the sec- 

ond order. Although being exact, the main disadvantage of these 

approaches is the necessity of using different expressions for each 

different case of different roots, two coincident roots, and three co- 

incident roots. A unified formulation, valid for degenerate as well 

as non-degenerate cases, has been first presented by Ting and Lee 

(1997) . Their approach has been further investigated by the re- 

cent work of Xie et al. (2016b ), in which the authors developed 
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a unified approach to compute the fundamental solutions of 3D 

anisotropic solids valid for partially degenerate, fully degenerate 

and non-degenerate materials. Although not suffering from ma- 

terial’s degeneracy, the expressions presented in the work of Xie 

et al. (2016b ) are valid only for anisotropic elastic materials, are 

given up to second order differentiation and are rather long and 

complex, in particular when the derivatives are considered. A 2D 

Radon transform approach has been also used in the literature as 

an alternative approach to the problem ( Buroni and Denda, 2014; 

Xie et al., 2016a ). 

The aforementioned works have been mainly devoted to the 

derivation of the fundamental solution or Green’s functions of elas- 

tic anisotropic materials. Recently, multi-field materials have re- 

ceived increasing interest for their application in composite multi- 

functional devices ( Nan et al., 2008; Peng et al., 2014 ). Closed 

form expressions can be found for transversely isotropic mate- 

rials showing piezo-electric ( Dunn, 1994; Dunn and Wienecke, 

1996 ) and magneto-electro-elastic ( Ding et al., 2005; Hou et al., 

2005; Soh et al., 2003; Wang and Shen, 2002 ) coupling. Pan and 

Tonon (20 0 0) used the Cauchy’s residue theorem to derive the 

fundamental solutions of non-degenerate anisotropic piezo-electric 

solids, and a finite difference scheme to obtain their derivatives. 

Buroni and Sáez (2010) used the Cauchy’s residue theorem and the 

Stroh’s formalism to obtain the fundamental solutions of degener- 

ate or non-degenerate anisotropic magneto-electro-elastic materi- 

als. Their scheme was recently employed in a boundary element 

code for fracture analysis ( Muñoz-Reja et al., 2016 ). 

From a numerical perspective, the fundamental solutions rep- 

resent the essential ingredient in boundary integral formulations, 

such as the Boundary Element Method (BEM) ( Aliabadi, 2002; 

Banerjee and Butterfield, 1981; Wrobel, 2002 ). In practical BEM 

analyses of engineering interest, the fundamental solutions and 

their derivatives are computed in the order of million times and 

the availability of efficient schemes for their evaluation is thus of 

great interest, especially for large 3D problems. To accelerate the 

computations for anisotropic elastic materials, Wilson and Cruse 

(1978) proposed pre-computing the values of the fundamental so- 

lutions at regularly spaced points of a spatial grid and using an 

interpolation scheme with cubic splines to approximate their val- 

ues in general points during the subsequent BEM analysis. Such 

an approach and similar interpolation techniques ( Schclar, 1994 ) 

have been widely employed in the BEM literature ( Benedetti and 

Aliabadi, 2013a; 2013b; Benedetti et al., 2016; 2009; Gulizzi et al., 

2015; Milazzo et al., 2012 ). Mura and Kinoshita (1971) represented 

the fundamental solutions of a general anisotropic elastic medium 

in terms of spherical harmonics expansions and used a term-by- 

term differentiation to obtain the first derivative. Aubry and Ar- 

senlis (2013) used the spherical harmonics expansions for dislo- 

cation dynamics in anisotropic elastic media and pointed out that 

line integrals and double line integrals could be obtained analyt- 

ically once the series coefficients were computed. Recently, Shiah 

et al. (2012) proposed an alternative scheme to compute the fun- 

damental solutions of 3D anisotropic elastic solids based on a dou- 

ble Fourier series representation. The authors expressed the fun- 

damental solutions as given by Ting and Lee (1997) in the spheri- 

cal reference system and then built their Fourier series representa- 

tion relying on their periodic nature. The authors underlined that 

the coefficients of the series were computed only once for a given 

material and employed their method in a BEM code ( Tan et al., 

2013 ). They also obtained the first and the second derivatives of 

the fundamental solutions whose complexity increases with the or- 

der of differentiation, despite the use of the spherical coordinates 

to obtain the derivatives. The interested reader is referred to the 

book by Pan and Chen (2015) and to the recent paper by Xie et al. 

(2016a ) for a comprehensive overview of the available methods to 

obtain the fundamental solutions. 

In the present work, given a generic linear system of PDEs 

defined by a homogeneous partial differential operator, the fun- 

damental solutions and their derivatives are computed in a uni- 

fied fashion in terms of spherical harmonics expansions. It is 

here demonstrated that the formula found by Mura and Kinoshita 

(1971) is in fact a particular case of a more general representation 

of the fundamental solutions and their derivatives, which are not 

obtained by a term-by-term differentiation and can be computed 

up to the desired order. The coefficients of the series depend on 

the material constants and need to be computed only once, thus 

making the present scheme attractive for efficient boundary inte- 

gral formulations. Eventually, mathematically degenerate media do 

not require any specific treatment and the present scheme can be 

generally employed to cases ranging from simply isotropic to more 

complex general anisotropic differential operators. To the best of 

the authors’ knowledge, it is the first time that the fundamental 

solutions for generally anisotropic multi-field materials and their 

derivatives up to any order are represented in such compact uni- 

fied fashion. 

The paper is organised as follows: Section 2 introduces the class 

of systems of partial differential equations and the correspond- 

ing fundamental solutions that will be addressed in the present 

study; Section 3 illustrates the mathematical steps needed to ob- 

tain the expressions of the fundamental solutions and their deriva- 

tives in terms of spherical harmonics; Section 4 presents a few 

results from the proposed scheme: first it is shown that, in the 

case of isotropic operators, the proposed representation leads to 

exact expressions of the fundamental solutions; then a few nu- 

merical tests covering generally anisotropic elastic, transversely 

isotropic and generally anisotropic piezo-electric and magneto- 

electro-elastic media are presented and discussed. Section 5 draws 

the final considerations. 

2. Problem statement 

The linear behaviour of different classes of multi-field materi- 

als, such as Piezo-Electric (PE), Magneto-Electric (ME), or Magneto- 

Electro-Elastic (MEE) materials, can be represented through a sys- 

tem of generally coupled partial differential equations (PDEs) 

L i j (∂ x ) φ j ( x ) + f i ( x ) = 0 (1) 

where x = { x k } ∈ R 

3 , k = 1 , 2 , 3 , is the spatial independent vari- 

able, φj ( x ) represent the unknown functions of x , f i ( x ) represent the 

known generalized volume forces, and i, j = 1 , . . . , N where N is the 

number of equations as well as the number of unknown functions. 

L i j (∂ x ) is supposed to be a general homogeneous partial differen- 

tial operator involving a linear combination of second order deriva- 

tives of x , i.e. L i j (∂ x ) = c i jkl ∂ 
2 ( ·) /∂ x k ∂ x l , where c ijkl are the mate- 

rial constants. The system of PDEs (1) may be specialised to several 

specific problems ranging from the classical Laplace equation up to 

the governing equations for general anisotropic magneto-electro- 

elastic materials, as shown in Section 4 . 

The system of PDEs in Eq. (1) is defined ∀ x ∈ V ⊆ R 

3 , being V 

the material domain, and it is mathematically closed by enforcing 

a suitable set of boundary conditions over the frontier S = ∂V of V . 

A well-established technique for numerically solving Eq. (1) is the 

Boundary Element Method (BEM) ( Aliabadi, 2002; Banerjee and 

Butterfield, 1981; Wrobel, 2002 ), which is based on the integral 

representation of the unknown field components φi ( x ). In particu- 

lar, using the Green’s identities, it is possible to express the values 

of the functions φi ( y ) at any interior point y ∈ V in terms of the 

values of φi ( x ) and their derivatives on the boundary S as 

φp ( y ) = 

∫ 
S 

[
�pi ( x , y ) τi ( x ) − T pi ( x , y ) φi ( x ) 

]
d S( x ) 

+ 

∫ 
V 

�pi ( x , y ) f i ( x )d V ( x ) , (2) 
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