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a b s t r a c t 

The paper presents a generalized thermodynamic theory of the multicaloric effect ( μCE) in single-phase 

solids. It is demonstrated that μCE consists of three well-known effects (electro-, magneto-, and elas- 

tocaloric) and three rather new ones that exist due to the interaction between the different fields. They 

are magnetoelectro-, piezoelectro-, and piezomagnetocaloric effects. Because of a coupling of six effects, 

it is difficult to identify a single effect in nonlinear materials. Therefore, the linear case is discussed first. 

Additionally, it is pointed out the necessity to take into account the influence of the gradients of thermo- 

dynamic variables on μCE. Such a focus has enabled us to predict the existence of a flexocaloric effect, 

that is a change of temperature or entropy with changing deformation gradient. The model is illustrated 

with data on BST, BaTiO 3 , PZT ceramics, and In 2 NiMnO 6 multiferroic. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

In recent years, three caloric effects (CEs) – electro/ mag- 

neto/ elasto(baro)caloric – were widely reported and discussed 

( Alex Müller et al., 1998; Gschneidner et al., 2005; Kitanovski et al., 

2015; Mischenko et al., 2006 ). These phenomena reflect the change 

of temperature and/or thermodynamic entropy of a system by the 

application or removal of an external field. The interaction between 

electrical, magnetic and elastic properties of the multiferroic ma- 

terial results in the appearance of multicaloric effect ( μCE) and 

meaningful increase in CEs strength ( Fähler et al., 2012; Kumar and 

Yadav, 2014; Lisenkov et al., 2013; Liu et al., 2014; Manosa et al., 

2013; Meng et al., 2013; Moya et al., 2014; Planes et al., 2014; 

Starkov et al., 2011, 2012; Zvezdin et al., 2009 ). The most consider- 

able effects are seen near the phase transition point of the materi- 

als used, where the internal parameters of the system are strongly 

temperature dependent. 

In spite of a plethora of works devoted to the experimental and 

theoretical analysis, a historical overview of the phenomenon was 

omitted or drastically shortened. Although the term “multicaloric”

is rather recent, it is possible to claim that the history of research 

on μCE has spanned over half a century. A pioneering work on the 

issue was conducted in parallel by Devonshire (1949) and Ginzburg 

(1949) . These studies have not focused directly on the caloric ef- 
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fects, but investigated the relationship between the electric and 

elastic fields for barium titanate. Five years later, the impact of 

pressure on the tricritical points for ferromagnetic and ferroelec- 

tric materials was experimentally examined in the paper of Patrick 

(1954) . Already in 1957, basic thermodynamic expressions describ- 

ing CEs in the interaction of two fields, i.e. a particular case of the 

multicaloric effect, were reported for the first time in the book of 

Nye (1957) . The equation (38) in Chapter 10 clearly determines the 

entropy change in the linear approximation for varying electric and 

elastic fields. 

Unfortunately, after these first encouraging steps, the further 

progress in the area had slowed. In 1968, the influence of pressure 

on the electrocaloric effect (ECE) was studied by Zheludev (1968) , 

who derived the equations for the various thermodynamic pro- 

cesses with constant stress and constant electric field. In-turn, the 

joint use of magnetic and elastic fields for the cooling purposes has 

been first proposed by Alex Müller et al. (1998) only in 1998. He 

analyzed both experimentally and analytically that caloric effects 

are strongest at the structural phase transition, and established 

the possibility to combine cooling methods in multiple ways. Af- 

ter five years, the thermodynamic theory for coupling of the elastic 

and magnetic fields was presented by Strässle et al. (2003) . Flerov 

(2012) applied these findings to the model to describe the ther- 

modynamic effects in the presence of three fields (electric, mag- 

netic, elastic) simultaneously. However, the vector nature of the 

fields were not taken into account, and all the considerations were 

made using scalar variables and again in a linear approximation. 

A little later, the interaction between magnetic and ferroelectric 
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subsystems leading to caloric response was postulated on the 

ground of experiments by Zvezdin et al. (2009) . 

Finally, the term “multicaloric” appeared in 2010 in the experi- 

mental work of Mañosa et al. (2010) . It was shown that the appli- 

cation of pressure to the magnetic shape-memory alloy gives rise 

to CE with a magnitude comparable to the giant magnetocaloric 

effect. As was theoretically predicted in Starkov et al. (2011, 2012) , 

a significantly larger temperature change (3–5 times) with the 

caloric effect can be obtained by a consistent periodic application 

of the fields (parametric enhancement). In addition, in these pa- 

pers, a thermodynamic description of the CEs coupling was origi- 

nally derived in the framework of the Landau–Ginzburg model and 

introduced the new idea of the use of multiferroics in the solid- 

state coolers. Considerable interest in the multicaloric cooling ap- 

peared in 2012 after the publication of Fähler et al. (2012) paper, 

which describes the prospects and challenging tasks of the solid- 

state refrigeration. Unfortunately, the following article by Vopson 

(2012) , released in the same year and dedicated to a similar topic, 

contains a number of errors ( Starkov and Starkov, 2015 ), which 

have been repeated in a series of subsequent studies (e.g., in Flerov 

et al. (2015) ; Planes et al. (2014) ; Vopson (2013) ). As an important 

outcome of the research on μCE, the conclusions on the strength- 

ening of the cooling effect in the presence of several fields were 

confirmed by the first principles calculations by Lisenkov et al. 

(2013) . Only recently, the measurements of the CEs coupling given 

in Flerov et al. (2015) conclusively show that μCE is not a simple 

sum of its constituent effects – electro- and elastocaloric (ElCE). It 

turned out, the interaction of electrical and elastic fields at certain 

temperatures leads to an approximate doubling of the multicaloric 

effect in comparison with the sum of ECE and ElCE. 

At present, scrutinizing the impact of a single field, most of 

the models provide identical results. Although some questions of 

the theory of interaction between two CEs had been considered 

previously ( Castán et al., 2012; De Oliveira, 2011; Manosa et al., 

2013; de Medeiros et al., 2008; Meng et al., 2013 ), a successful 

attempt to move towards a complete thermodynamic theory of 

μCE, taking into account the gradients of thermodynamic quan- 

tities and their non-linear dependence in vector form, was made 

only in 2014 ( Starkov and Starkov, 2014a ). Another problem is the 

absence of an established terminology, even nowadays. For exam- 

ple, four CEs have been investigated in Fähler et al. (2012) . The 

authors separately considered the barocaloric effect, which, as is 

demonstrated by Starkov and Starkov (2014c) , is a part of the 

elastocaloric effect for either uniaxial or hydrostatic pressure. In 

Moya et al. (2014) ElCE is named mechanocaloric, and in Lisenkov 

et al. (2013) – piezocaloric. We believe that if there are three main 

fields: electric, magnetic, and elastic; then effects corresponding to 

these fields should be called by the names of the fields, i.e., elec- 

trocaloric, magnetocaloric and elastocaloric. However, the interplay 

of forces of different nature, quite obviously, can cause additional 

effects: magnetoelectrocaloric, piezoelectrocaloric, and piezomag- 

netocaloric. For instance, the toroidocaloric effect studied in Castán 

et al. (2012) was considered as an independent phenomenon. In 

our opinion, it should be understood as a particular case of the 

magnetoeletrocaloric effect. The listed above effects were reported 

in various ways and authors obtained different results at the final 

stage (cf. Planes et al. (2014) ; Starkov and Starkov (2014c )). There- 

fore, the main aim of this work is to accurately and comprehen- 

sively describe μCE and its corresponding components. 

2. Thermodynamic theory of caloric effects 

2.1. Gibbs free energy 

To describe the thermodynamics of the system, we will use the 

internal energy U and the Gibbs free energy F given by ( Castán 

et al., 2012; Manosa et al., 2013; Planes et al., 2014; Starkov et al., 

2012 ) 

F = U − T S − x i X i . (1) 

Here T is the temperature, S is the entropy, x i are the general- 

ized forces, and X i are the generalized coordinates ( i = 1 , 2 , . . . , n ). 

In (1) the Einstein summation notation is used, i.e., repeated in- 

dices are summed over the Cartesian components. As the first step, 

we consider U dependent only on the generalized forces and coor- 

dinates, but not on their derivatives. The general solution of the 

problem will be given in Section 4 . Note that the initial internal 

energy depends on { x i , S }, and after performing the Legendre trans- 

formation (transition from the internal to the free energy) U in 

(1) depends on { X i , T }. Thus, the extreme condition of the free en- 

ergy F leads to the relations ( Castán et al., 2012; Planes et al., 2014 ) 

X i = 

∂U 

∂ x i 
, S = −∂F 

∂T 
. (2) 

In turn, the entropy differential ( Castán et al., 2012; Strässle et al., 

2003 ) 

d S = 

∂S 

∂T 
d T + 

∂S 

∂ x i 
d x i , (3) 

by taking into account the Maxwell relations and definition of the 

heat capacity C in constant external fields ( Nye, 1957 ), can be writ- 

ten in the form 

d S = 

C 

T 
d T + 

∂ X i 

∂T 
d x i . (4) 

This implies that the equations for the basic thermodynamic pro- 

cesses are ( Castán et al., 2012; Nye, 1957 ) 

d S ist = 

∂ X i 

∂T 
d x i , d T ad = −T 

C 

∂X i 

∂T 
d x i . (5) 

The first relation in (5) describes the isothermal entropy change, 

while the second deals with the adiabatic temperature change. 

Before turning to the details of the calculations, it is worth clar- 

ifying the notations and conventions that will be used in the pa- 

per. Henceforth, explicit expressions for temperature, which differ 

from the formulas for the entropy by the multiplier T / C , will not be 

written out. The indices ist and ad mean value of any quantity in 

an isothermal or adiabatic process. Also, the entropy and tempera- 

ture increments corresponding to their differentials will be further 

denoted by �. 

2.2. Linear dependence between generalized forces and coordinates 

First, we will examine a relatively simple example that allows 

us to obtain explicit analytical expressions for μCE. In most cases, 

it can be assumed that the internal energy is the quadratic form of 

the generalized coordinates U = a i j X i X j / 2 , where a i j = a ji are some 

coefficients that may depend on temperature. Then, the relation- 

ship between the generalized forces and coordinates is given by 

the linear equations x i = a i j X j and 

X i = χi j x j . (6) 

The matrix of generalized susceptibilities χ is inverse of the matrix 

a . More complicated variant of the nonlinear relation between x i 
and X i (based on the Landau free energy) can be found in Planes 

et al. (2014) ; Starkov and Starkov (2014b ). 

For an arbitrary dependence of the internal energy on the gen- 

eralized coordinates, the matrix χ should be understood as the Ja- 

cobian matrix of the transition from generalized forces to general- 

ized coordinates χi j = ∂ X i /∂ x j . This way, the equation (5) becomes 

d S ist = 

∂ χi j 

∂T 
x i d x j . (7) 
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