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a b s t r a c t 

This paper analyzes partial slip contact problems in the theory of linear viscoelasticity under a wide vari- 

ety of loading conditions, including cyclic (fretting) loads, using a semi-analytical method. Such problems 

arise in applications like metal-polymer contacts in orthopedic implants. By using viscoelastic analogues 

of Green’s functions, the governing equations for viscoelastic partial-slip contact are formulated as a pair 

of coupled Singular Integral Equations (SIEs) for a conforming (pin-plate) geometry. The formulation is 

entirely in the time-domain, avoiding Laplace transforms. Both Coulomb and hysteretic effects are con- 

sidered, and arbitrary load histories, including bidirectional pin loads and remote plate stresses, are al- 

lowed. Moreover, the contact patch is allowed to advance and recede with no restrictions. Viscoelasticity 

necessitates the application of the stick-zone boundary condition in convolved form, and also introduces 

additional convolved gap terms in the governing equations, which are not present in the elastic case. 

Transient as well as steady-state contact tractions are studied under monotonic ramp-hold, unload-reload, 

cyclic bidirectional (fretting) and remote plate loading for a three-element solid. The contact size, stick- 

zone size, indenter approach, Coulomb energy dissipation and surface hoop stresses are tracked during 

fretting. 

Viscoelastic fretting contacts differ from their elastic counterparts in notable ways. While they shake- 

down just like their elastic counterparts, the number of cycles to attain shakedown states is strongly 

dependent on the ratio of the load cycle time to the relaxation time. Steady-state cyclic bulk hysteretic 

energy dissipation typically dominates the cyclic Coulomb dissipation, with a more pronounced difference 

at slower load cycling. However, despite this, it is essential to include Coulomb friction to obtain accu- 

rate contact stresses. Moreover, while viscoelastic steady-state tractions agree very well with the elastic 

tractions using the steady-state shear modulus in load-hold analyses, viscoelastic fretting tractions in 

shakedown differ considerably from their elastic counterparts. Additionally, an approximate elastic analy- 

sis misidentifies the edge of contact by as many as 7 degrees in fretting, showing the importance of vis- 

coelastic contact analysis. The SIE method is not restricted to simple viscoelastic networks and is tested 

on a 12-element solid with very long time scales. In such cases, the material is effectively always in a 

transient state, with no steady edge-of-contact. This has implications for fretting crack nucleation. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

The contact of a viscoelastic polymer with a counterbody made 

of a much stiffer material has drawn considerable attention be- 

cause of its importance in applications like rubber tires. There is a 

significant body of work focused on the frictional characteristics of 

soft elastomers like rubber ( Carbone and Putignano, 2013; Grosch, 

1963; Persson, 2001 ). Friction in such materials is attributed to 

bulk hysteretic losses, and typically investigated under conditions 

of rolling or sliding. 

Early analytical work in viscoelastic contacts includes the so- 

lution of the Hertz-type problem with a monotonically increas- 
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ing contact area ( Lee and Radok, 1960 ), its extensions to non- 

monotonic cases ( Graham, 1967; Hunter, 1960; Ting, 1966 ), and 

viscoelastic rolling contacts ( Hunter, 1961; Morland, 1968 ). In 

plane-strain viscoelastic contacts, an extension of the Kolosov–

Muskhelishvili method of linear elasticity has been used to 

solve both frictionless ( Golden and Graham, 1988 ) and Coulomb 

limiting-friction problems ( Goryacheva et al., 2008 ). More recent 

analytical / semi-analytical work has addressed such problems as 

adhesion in viscoelasticity ( Hui et al., 1998 ) and the contact of 

viscoelastic bodies with hard, rough surfaces ( Chen et al., 2011; 

Persson et al., 2004 ). However, the Coulomb partial slip regime 

in viscoelastic contacts has received much less attention. In partial 

slip contact, global relative tangential motion (sliding) does not oc- 

cur. Instead, the contact consists of slip zones, where local relative 

http://dx.doi.org/10.1016/j.ijsolstr.2016.09.001 
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tangential motion does occur, and stick zones, where no relative 

tangential motion occurs ( Johnson, 1987 ). 

Partial slip viscoelastic contacts arise in applications like or- 

thopedic implants, which involve contact between a metal and a 

polymer ( Duisabeau et al., 2004 ). The metal is typically austenitic 

stainless-steel or a titanium alloy like Ti6-Al-4V, while the poly- 

mer is usually Polymethyl Methacrylate (PMMA) or an Ultra-high 

Molecular Weight Polyethylene (UHMWPE) ( Geringer et al., 2005 ). 

The failure of these implants is understood to be driven by a com- 

plex, contact-driven process known as fretting corrosion ( Geringer 

et al., 2005; Tritschler et al., 1999 ), in which the deleterious effect 

of a corrosive environment enhances fretting ( Higham et al., 1978 ). 

Cyclic loading of such contacts occurs during routine use of the 

limbs, e.g. while walking ( Kim et al., 2013 ). Either the metal or the 

polymer may undergo damage, with wear debris from both mate- 

rials reported in experiments ( Tritschler et al., 1999 ). In metal-on- 

metal fretting, it is known that high-fidelity analysis of the edge- 

of-contact stress is an essential ingredient of fretting crack nucle- 

ation models ( Fellows et al., 1995; McVeigh et al., 1999 ). This in- 

volves accurate modeling of partial slip contacts and tracking of 

the contact stress history during cyclic loading. Accurate contact 

stress analysis might be expected to provide similar insights into 

metal-polymer fretting. 

The introduction of partial slip complicates contact problems in 

elasticity as well as in viscoelasticity. This is because of the his- 

tory dependent nature of partial slip contacts, which makes their 

analysis inherently incremental, and coupling between pressure 

and shear tractions in the governing equations. An early partial 

slip solution in linear viscoelasticity was obtained by Goryacheva 

(1973) for rolling of a viscoelastic cylinder on a halfspace of a sim- 

ilarly viscoelastic material. 1 Other Coulomb frictional viscoelastic 

solutions include the rolling contact of layered cylinders ( Kalker, 

1991 ) and a cylinder rolling on a viscoelastic layer atop an elastic 

halfspace ( Goryacheva and Sadeghi, 1995 ). The assumption of ma- 

terial similarity in Goryacheva (1973) or the Goodman approxima- 

tion ( Goodman, 1962 ) in Goryacheva and Sadeghi (1995) is analyt- 

ically helpful because it eliminates coupling between the pressure 

and shear tractions. However, these assumptions are inapplicable 

to metal-polymer contacts, where the counterbody is much stiffer. 

Moreover, partial slip fretting contacts may be subject to very com- 

plex load histories. Under such conditions, it is almost impossible 

to obtain closed-form solutions. However, formulating the govern- 

ing equations of contact as Singular Integral Equations (SIEs) leads 

to a fast, semi-analytical method to solve these problems. 

The present work builds an accurate SIE-based model for partial 

slip viscoelastic contacts in monotonic and cyclic loading, thereby 

accounting for both Coulomb and hysteretic effects. The starting 

point is a viscoelastic analogue of the elastic Green’s functions. 

Since metals are typically much stiffer than polymers, it is a good 

assumption to treat the metal as a rigid body. 

The conforming (pin-plate) geometry is chosen for our work 

because it has the advantage of allowing calculation of indenter 

approach, and thus various energy dissipation estimates, in plane 

strain viscoelasticity. Furthermore, the implant contact geometry is 

typically of a conforming type. Conforming contacts also have the 

advantage of including halfspace contacts as a limiting case. Con- 

forming elastic contacts have been studied extensively in both re- 

ceding and advancing contact regimes ( Gladwell, 1980; To and He, 

2008 ). Two frictionless conforming contact solutions are known 

in linear viscoelasticity, both in the receding (rather than advanc- 

ing) contact regime. Margetson and Morland (1970) considered the 

problem of separation of an inclusion from a viscoelastic plate in 

1 This is the viscoelastic analogue of Carter’s problem ( Barber, 2010 ). 

Fig. 1. (a) Three-element delayed elastic solid and (b) generalized Maxwell model. 

uniaxial loading. Subsequently, Golden and Graham (2001) consid- 

ered the same problem with biaxial loading. 

2. Formulation 

2.1. Creep and relaxation functions of a linear viscoelastic solid 

The shear relaxation modulus of a linear viscoelastic solid is 

represented by ( Golden and Graham, 1988 ) ( Fig. 1 ) 

G (t) = G ∞ 

+ 

n ∑ 

i =1 

G i exp 

(
− t 

τi 

)
= G 0 −

n ∑ 

i =1 

G i 

(
1 − exp 

(
− t 

τi 

))
(2.1) 

where G 0 is the instantaneous modulus, G i the shear moduli of the 

network spring elements, τ r are relaxation time constants and G ∞ 

is the modulus at t = ∞ . Similarly, the creep response is character- 

ized by 

J (t) = J ∞ 

−
n ∑ 

r=1 

J r exp 

(
− t 

λr 

)
= J 0 + 

n ∑ 

r=1 

J r 

(
1 − exp 

(
− t 

λr 

))
(2.2) 

where J r and λr represent, respectively, the compliances of the 

springs and retardation time constants. 

2.2. Governing equations of the contact problem 

A general way to formulate contact problems for linear media 

is to use appropriate Green’s functions. These are typically surface 

displacements produced by point normal and tangential loads act- 

ing on the boundary of the domain. We first derive a viscoelastic 

analogue of the elastic Green’s functions for the plate, by using an 

extension of the Kolosov–Muskhelishivili formulation for viscoelas- 

tic materials (see Appendix ). 

Then, let R D < R be the radius of the rigid pin. In the refer- 

ence state, the pin rests on the plate as shown in Fig. 2 . If the pin 

is rotated by a small amount C ω , and pressed into the viscoelas- 

tic plate by a rigid displacement V = (C 0 x , −�) , the gap function 

h d ( θ , t ) is 

h d (θ, t) = (R − R D )(1 + sin (θ )) − C 0 x (t) cos (θ ) + �(t) sin (θ ) 

(2.3) 

The overclosures thus produced must be relieved at every point by 

displacements in the viscoelastic plate so that the new gap equa- 

tion is 

h (θ, t) + (R D − R )(1 + sin (θ )) + C 0 x cos (θ ) 

−� sin (θ ) − ˜ v ∞ 

r = 

˜ v p r + ̃

 v q r (2.4) 

Here ˜ v p r and 

˜ v q r are, respectively, the radial surface displacements 

of the plate due to normal and shear tractions, and 

˜ v ∞ 

r is the ra- 

dial surface displacement caused by remote stresses applied to the 
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