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a b s t r a c t 

Static discrete models are advantageously used for the simulation of fracture in quasibrittle heteroge- 

neous materials. In order to correctly capture strain localization during the fracture process, it is often 

necessary to represent material heterogeneity in the model directly via its discrete geometry. Depending 

on the specimen size and the size of the heterogeneities, these simulations are typically extremely com- 

putationally demanding. The contribution aims to reduce this computational cost via the implementation 

of adaptivity in the construction of the discrete model geometry. The simulation starts with coarse dis- 

cretization, which provides correct elastic behavior and is then adaptively refined during the simulation 

in regions that suffer high stresses that induce cracking and strain localization. The technique is applied 

in deterministic and probabilistic simulations and demonstrated on several examples. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

The discrete representation of materials is a natural alternative 

to continuous approaches. A collection of interconnected rigid bod- 

ies organized into a net structure is often called a discrete or lat- 

tice model. Discrete models are being used in current research for 

several purposes. Besides simulations of processes occurring in ex- 

perimental specimens, discrete models are often used to validate 

other model types, e.g. continuum based approaches ( Grassl et al., 

2014 ). In fracture simulations, the model can be static ( Man and 

Van Mier, 2011; Sands, 2016 ) or dynamic ( Frantík et al., 2013; 

Zhao et al., 2014; Sinaie et al., 2016 ); in this contribution we focus 

only on static models with lattices of random geometry based on 

Voronoi tessellation, such those used by ( Gedik et al., 2011; Eliáš

and Le, 2012; Kang et al., 2014 ). 

The fine discretization of the discrete model leads to extreme 

computational demands, but it is necessary when it is related to 

the meso-scale structure of the simulated material. Too long com- 

putational time of the discrete meso-scale models prohibits their 

wider usage in both research and practice. Researchers devote a lot 

of effort to speed up the simulation, see for example the coarse 

graining method ( Alnaggar and Cusatis, 2012 ). 

This paper presents a technique for the adaptive refinement of 

model discretization. Without this tool, it is necessary to use fine 

discretization from the beginning and therefore to create compu- 

tationally demanding model. If adaptive refinement is available, it 
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allows the simulation to start with coarse discretization and refine 

it adaptively during the simulation run. 

Adaptivity is already a well-established concept in continuum 

modeling. It was first used in elastic problems ( Babuška and Rhein- 

boldt, 1978; Zienkiewicz and Zhu, 1987 ) and later was also ap- 

plied to inelastic problems with localization ( Selman et al., 1997; 

Rodríguez-Ferran and Huerta, 20 0 0; Patz ̌ak and Jirásek, 20 04; Pan- 

nachet et al., 2010 ). The classical approach involves error estima- 

tion, remeshing criterion, mesh re-generation and transfer of vari- 

ables onto the new mesh. 

Successful attempts to introduce adaptivity into discrete models 

already exist ( Bolander et al., 1996; Sorg and Bischoff, 2014 ). They 

are based on the adaptive replacement of a continuous model with 

a discrete one, though the discrete model has to have regular ge- 

ometry which produces directional bias. The current contribution 

features adaptive refinement which is performed within the dis- 

crete model only and allows the use of irregular geometry. 

The proposed algorithm works as follows. Initially, the whole 

domain is artificially coarsely discretized. Whenever any region 

of the coarse model exceeds a criterion based on the equivalent 

stress, the coarse discretization in its vicinity is replaced by the 

finer one that corresponds to the real material heterogeneity. All 

the nonlinear phenomena occur in the fine discretization, there- 

fore no history variables need to be transfered onto the new model 

structure. 

2. The random geometry of the model 

The model geometry is random to avoid directional the bias 

that occurs in any regular structure. The domain of the modeled 
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Nomenclature 

α Tangential/normal stiffness ratio 

� Displacement jump between two rigid bodies 

ε Strain 

γ Parameter controlling adaptive refinements 

λ, ψ Eigenvalues and eigenvectors of covariance matrix 

σ Stress 

θ Rotational degrees of freedom 

ξ , ξ Scaling parameter; vector of ind. standard Gaussian 

variables 

A Matrix of rigid body motion 

A Area of contact facet 

c Centroid of contact facet 

C Covariance matrix 

D Damage parameter 

E Elastic modulus of contact 
˜ E Macroscopic elastic modulus 

F Forces acting on nodes 

f t Tensile strength of contact 

G t Fracture energy of contact in tension 

H, ̂ H Random field, Gaussian random field 

L Length of contact 

l ρ Correlation length 

l min Minimum distance of random nuclei 

l f , l c Minimum distance in fine and coarse discretization 

n , m , l Normal and two tangential directions 

N, M, L Indices for normal and tangential directions 

M Moments acting on nodes 

r f , r c Radius for fine and coarse discretization 

u Translational degrees of freedom 

V Volume of one rigid body 

W Dissipated energy 

x Vector of coordinates 

element is filled with nuclei with randomly generated positions. 

These nuclei are added sequentially and accepted only when the 

distances to previously placed nuclei are greater than the chosen 

parameter l min (see Fig. 1 ). Parameter l min controls the size of the 

discrete bodies and therefore should correspond to the size of the 

heterogeneities in the material (e.g. aggregate diameter). Each of 

the nuclei will serve as one model node bearing three translational, 

u , and three rotational, θ, degrees of freedom (DOF). 

The domain is considered to be saturated when a new nucleus 

is rejected for a large number of subsequent trials. Delaunay trian- 

gulation is performed providing connectivity between the nuclei. 

A dual diagram called Voronoi tessellation then creates the geome- 

try of the rigid bodies (see Fig. 1 ). Rigid bodies have common con- 

tact facets that are perpendicular to their connections; the facet 

centroids are denoted c (see Fig. 2 ). 

3. Elastic behavior 

The macroscopic elastic behavior of a discrete system is inde- 

pendent of the size of the discrete units. This statement is a funda- 

mental assumption of the adaptive technique, but is not obvious. 

The proof and numerical verification of this statement are deliv- 

ered bellow. 

3.1. Scaling of the elastic problem 

This subsection is based on work of Cusatis et al. (2011b ), from 

which it adopts both notation and theory. The equations are based 

on an assumption of ideally rigid bodies connected by linear-elastic 

Fig. 1. Model geometry obtained by the Voronoi tessellation on randomly placed 

nuclei with a restricted minimum distance l min ; 2D sketch. 

Fig. 2. One discrete body of random geometry and one contact facet between nu- 

clei i and j – normal and tangential directions and forces. 

bonds. This type of model is known in literature as the rigid-body- 

spring network ( Kawai, 1978; Bolander et al., 20 0 0 ). 

Let us analyze one contact between nuclei i and j of coordinates 

x i = [ x 1 i , x 2 i , x 3 i ] 
T and x j with central point c , and lenght L , see 

Fig. 2 . The translations of point i are denoted u i = [ u 1 i , u 2 i , u 3 i ] 
T 

and the rotations are θi = [ θ1 i , θ2 i , θ3 i ] 
T 

. Then, fr om the rigid body 

motion (assuming small rotations), the position of any point x in- 

side the body associated with nucleus i can be expressed as 

u (x ) = u i + θi × ( x − x i ) = A i (x ) 

[
u i 

θi 

]
(1) 

with matrix A i ( x ) being 

A i (x ) = [ 

1 0 0 0 x 3 − x 3 i x 2 i − x 2 
0 1 0 x 3 i − x 3 0 x 1 − x 1 i 
0 0 1 x 2 − x 2 i x 1 i − x 1 0 

] 

(2) 

The displacement discontinuity �ij between bodies i and j is mea- 

sured by their separation at the common facet centroid c . 

�i j = 

[ 


1 i j 


2 i j 


3 i j 

] 

= A j (c) 

[
u j 

θ j 

]
− A i (c) 

[
u i 

θi 

]
(3) 

Contact forces are calculated based on the displacement disconti- 

nuity. Three contact forces acting at point c in the normal direc- 

tion, n , and two tangential directions, m and l , are given by [ 

F N 
F M 

F L 

] 

= 

EA 

L 

[ 

n 

T �i j 

αm 

T �i j 

αl T �i j 

] 

(4) 

where L is the distance between nodes i and j, A is the area of the 

contact facet and α and E are two elastic parameters of the contact 

providing normal stiffness EA / L and tangential stiffness αEA / L . 

The forces and moments acting on node i ( F ij and M ij ) and j ( F ji 
and M ji ) due to contact ij can be obtained from the principle of 
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