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a b s t r a c t 

The stresses and displacements of an orthotropic half-plane were obtained under a line load moving at a 

constant speed over its surface. The Fourier transform was applied to solve the problem at all speeds. It 

was verified that the stresses and displacements can be readily classified into three regimes according to 

the speed of the moving load. The expressions for the stresses and displacements have shapes similar to 

those of the solutions to the corresponding problem for an isotropic half-plane. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

When a meteorite passes through the atmosphere, it acts as a 

moving load that stresses the surface of Earth. The velocity of the 

moving load is great, and infinite stresses arise on the planes that 

move with the moving load. Sneddon (1952) estimated the stresses 

produced by a line load moving at a subsonic speed on an elastic 

half-space using the Fourier transform. Cole and Huth (1958) es- 

timated the stresses and displacements under a high-speed mov- 

ing line load applied to Earth’s surface using the complex function 

method for subsonic, transonic, and supersonic speeds. In their 

study, it was determined that at transonic and supersonic speeds, 

stresses are infinite on planes that move with the moving load ap- 

plied to Earth’s surface. However, their paper included some ty- 

pographical errors, which were corrected by Georgiadis and Bar- 

ber (1993) and by Rahman (2001) . Atsumi and Itou (1970) esti- 

mated the stresses induced in an elastic Cosserat half-plane by a 

moving load for all speeds using the Fourier transform. 

If the surface of Earth is not isotropic but anisotropic, the 

stresses can be estimated using the anisotropic theory of elastic- 

ity. Liou and Sung (2008) estimated the stresses in an anisotropic 

half-plane under a moving load applied over the surface of the 

half-plane at a subsonic speed. Later, Liou and Sung (2012) inves- 

tigated the response of an anisotropic half-plane under a moving 

load at all speeds. Closed forms for the stresses and displacements 

were obtained in these two studies. However, the derivations of 

the equations were denoted using matrices. If explicit expressions 
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for the stresses are required, additional troublesome calculations 

must be performed. 

In the present study, the stresses and displacements of an 

orthotropic half-plane with a line load moving at a constant 

speed on the surface of the half-plane were estimated us- 

ing the Fourier transform. For an isotropic half-plane, Cole and 

Huth (1958) showed that the stresses are infinite on planes with 

discontinuous displacements. The same behaviors have also been 

observed for an orthotropic half-plane at transonic and supersonic 

speeds. 

2. Fundamental equations 

The rectangular coordinates ( ̄x , ȳ ) are fixed in the half-plane 

ȳ > 0 , as shown in Fig. 1 . We considered a concentrated vertical 

line pressure p , defined as positive when acting downward, mov- 

ing in the positive x̄ -direction at a speed U . When the problem is 

solved under the plane stress condition, the equations of motion 

can be reduced to the following form: 
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Fig. 1. Coordinate systems and moving load. 

where u and v are defined as the x̄ - and ȳ -components of the dis- 

placement, respectively; E x and E y are the Young’s moduli in the x̄ - 

and ȳ -directions, respectively; μx y is the modulus of rigidity; νx y 

is Poisson’s ratio; ρ is the density of the material; and t̄ is time. 

To solve the problem, new coordinates ( x , y ) fixed to the load 

were introduced, as shown in Fig. 1 . Using the Galilean transfor- 

mation 

x = U t̄ + x̄ , y = ȳ , t = t̄ , (3) 

Eq. (1) can be reduced to the form 
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The stresses can be expressed using the load-fixed coordinates 

( x , y ) as 

σx 
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The boundary conditions at the surface y = 0 are given by 

σy 

∣∣
y =0 = −p δ(x ) , τx y 

∣∣
y =0 = 0 , (6) 

where δ( x ) is the Dirac delta function. 

3. Analysis 

To solve for the stresses and displacements, the following 

Fourier transforms were introduced: 

f̄ (ξ ) = 

∫ ∞ 

−∞ 

f (x ) exp (i ξ x ) d x, 

f (x ) = 

1 

2 π

∫ ∞ 

−∞ 

f̄ (ξ ) exp (−i ξ x ) d ξ. (7) 

Applying Eq. (7) to Eq. (4) yields 
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d ū 

d y 
− ξ 2 (1 − M 

2 
T ) v̄ = 0 , (8) 

where 
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Eq. (8) can be readily reduced to 
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The characteristic equation for the differential equation given in 

Eq. (10) is given by 

λ4 + q λ2 + r = 0 . (12) 

The solutions to Eq. (12) can be expressed as 

λn = λn R | ξ | + i λn I ξ (n = 1 , 2 , 3 , 4) (13) 

where λ n R and λ n I are real numbers. The first real number λ n R 

must be negative because stresses and displacements must ap- 

proach zero as y → ∞ at low moving speeds U . At high moving 

speeds U , displacements are discontinuous on planes in the half- 

plane. The planes cannot appear ahead of the line pressure, and 

thus λ n I must be positive when λ n R =0. Therefore, λ 1 can be se- 

lected as follows: 

for 0 < q 2 −4 r and 0 < −q + ( q 2 −4 r ) 1/2 , 

λ1 = −[ −q + ( q 2 − 4 r) 1 / 2 ] 1 / 2 / 
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In Eq. (15) , sgn (ξ ) is the signum function. The second solution 

λ 2 to Eq. (12) can be obtained as follows: 
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√ 
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If the value of q 2 −4 r is negative, λ 1 and λ 2 must be selected 

according to the value of cos ( θ1 /2) as follows: 

for 0 < cos ( θ1 /2), 
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√ 

η1 / 2 sin ( θ1 / 2) sgn (ξ ) , (18) 
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√ 
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√ 
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and for cos ( θ1 /2) < 0, 

λ1 = 

√ 

η1 / 2 cos ( θ1 / 2) + i 
√ 

η1 / 2 sin ( θ1 / 2) sgn (ξ ) , (20) 

λ2 = 

√ 

η1 / 2 cos ( θ1 / 2) − i 
√ 

η1 / 2 sin ( θ1 / 2) sgn (ξ ) , (21) 

where 

η1 = 2 

√ 

r , θ1 = tan 

−1 
2 [(4 r − q 2 ) / (−q )] . (22) 

In all cases, λ3 and λ4 are given by 

λ3 = −λ1 , λ4 = −λ2 . (23) 

For the lower half-plane, the solutions to Eq. (10) have the fol- 

lowing forms in terms of the unknown coefficients A , B , C , and 

D : 

ū = A exp (α y ) + B exp (β y ) , v̄ = C exp (α y ) + D exp (β y ) , 

(24) 
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