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a b s t r a c t 

A nonlinear initial boundary value problem for the lithium ion concentration, the electric potential and 

the electrode-electrolyte interface currents is introduced on the microscale. The model enables the reso- 

lution of porous electrode microstructures. Different exchange current densities for Butler–Volmer inter- 

face conditions are evaluated. The Cahn–Hilliard equation is used to describe the phase transition from 

solid-solution diffusion to two-phase dynamics. The resulting phase-field model is then discretized on a 

regular mesh. A first-order finite-volume scheme with an adaptive time integration method is applied. 

The parameters and their effects in the non-convex Helmholtz energy are investigated and explained. 

Furthermore, the numerical convergence of the scheme is examined. In order to illustrate the method, 

the charging process of several single-particles and a complex structure is numerically simulated. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Today lithium ion batteries form an indispensable component 

for electronic devices or electric vehicles. Even though lithium ion 

electrodes are very versatile in battery production due to their high 

energy density, the diverse fields of application require the predic- 

tion of life-time and capacity fade . A lot of electrode materials 

show degradation during usage. If a large current is applied at the 

poles of the battery during discharge, the diffusion of lithium ions 

inside the battery from anode to cathode is not fast enough and 

concentration gradients arise. In some materials the restructuring 

of the lithium ions inside the crystal structure of the electrode ma- 

terial gives rise to large strains ( Broussely et al., 2005 ). From ex- 

periments it is known that the stresses related to these strains can 

cause mechanical damage effects in materials including lithium tin 

oxide ( Chen et al., 2011 ), lithium manganese oxide ( Huttin, 2014 ), 

lithium titanate oxide ( Choi et al., 2013 ) and lithium iron phospate 

( Cogswell and Bazant, 2012 ). The mechanical stresses arising in a 
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porous electrode made of lithium manganese oxide have been nu- 

merically simulated with a model based on diffusive dilute solu- 

tion theory ( Taralov, 2015 ). In this model a diffusion equation is 

used to describe the distribution of lithium ions inside the battery. 

But especially in lithium iron phospate, the diffusion of the 

lithium ions from electrolyte into the active material cannot be 

modeled by a regular diffusion equation. While in a lot of materials 

the diffusion leads to an even ion distribution inside the material, 

for lithium iron phospate a separation into areas with a maximum 

concentration of lithium ions and areas where no lithium ions are 

present ( Ebner et al., 2013; Zhu et al., 2013; Chueh et al., 2013; Lim 

et al., 2016 ). Even without applied current, the lithium enriched 

areas do not diffuse. The distribution of the lithium ions inside 

the material can then be described by two different phases, one 

phase enriched with lithium ions and one phase devoid of lithium 

ions. The process of separation into different phases is called spin- 

odal decomposition. The problem of describing the movement of 

the boundaries between both phases is often called a Stefan prob- 

lem ( Andersson, 2002; Harari and Dolbow, 2010 ) and can be ap- 

proached by adaptive meshes and front-tracking methods ( Mitchell 

and Vynnycky, 2009 ). 
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Another approach called phase-field method is introduced in 

the works of Cahn and Hilliard ( Cahn and Hilliard, 1958 ) and 

is based on a thermodynamical approach involving a non-convex 

Helmholtz energy functional. In a general phase-field method, the 

boundary between two phases is discretized and a fine regu- 

lar spatial mesh is used. In phase-field models for diffusive pro- 

cesses the constituent fourth-order nonlinear partial differential 

equation is called the Cahn–Hilliard equation. Recent formulations 

for lithium iron phosphate particles can be found in Abdellahi 

et al. (2016) ; Burch (2009) ; Singh et al. (2008) ; Bazant (2013) . 

While those models are restricted to simulations of electrode ma- 

terial, the presented model describes diffusion and electric po- 

tentials in both electrodes and the electrolyte. There are simula- 

tions for the charging of electrode material for different spherical 

( Welland et al., 2015; Zeng and Bazant, 2014 ), ellipsoidal nanopar- 

ticles ( Huttin, 2014; Leo et al., 2014 ) or more complex single 

particle microstructures ( Tang et al., 2011; Cogswell and Bazant, 

2013 ). Macroscopic charge-discharge behavior of porous electrodes 

( Dreyer et al., 2011; Ferguson and Bazant, 2014; 2012; Orvananos 

et al., 2014; Li et al., 2014 ) and a focus on effects like hysteresis 

( Dreyer et al., 2010 ) are explained without resolving a microstruc- 

ture but using arguments of homogenization or particle size. In 

this article a model for the resolution of porous electrode mi- 

crostructures is introduced. 

In Section 2 the electrochemical model for a dilute solution 

battery on the microscale ( Latz and Zausch, 2011 ) is presented. A 

phase-field model for phase separation given in Zeng and Bazant 

(2014) is introduced. A model for a battery with resolved mi- 

crostructure in the porous electrodes, a phase-field model in 

the cathode material, and variable Butler–Volmer interface cur- 

rents are introduced. In Section 3 the spatial discretization is 

introduced. An adaptive time integration algorithm with small 

timesteps during initiation of phase-separation and reconfigura- 

tions and large timesteps during moving of phase-interfaces is pre- 

sented. In Section 4 different numerical tests are presented. The 

well-known process of spinodal decomposition is shown and ex- 

plained in Section 4.1 on a circular cathode particle. Two differ- 

ent models for the exchange current density in the Butler–Volmer 

currents are evaluated in Section 4.2 , and the interaction of the 

Butler–Volmer currents with the different phases at the interface is 

examined. In Section 4.3 the numerical convergence of the battery 

cell voltage is examined. In Section 4.4 the effect of the size and 

the shape of the cathode particle on the phase separation process 

is investigated as already has been reported in Bai et al. (2011) . In 

Section 5 all findings are summarized and possible enhancements 

as well as extensions of the numerical method are discussed. 

2. Electrochemical model 

In this section the equations for a lithium ion battery model 

on the microscale are presented. After introducing the spatial do- 

mains involved the transport equations ( Latz and Zausch, 2011 ) 

for the lithium ions and electric charges in each domain are pro- 

posed in anode and electrolyte. The transport in the cathode do- 

main is given in Bazant (2013) ; Zeng et al. (2013) . Current condi- 

tions on the interface between the domains are taken from estab- 

lished models and boundary and initial conditions complete the 

model. In this paper the spatial two dimensional case is consid- 

ered. The extension to a three dimensional model is possible. 

A rectangular domain � = (0 , L x ) × (0 , L y ) ⊂ R 

2 in Fig. 1 de- 

notes the micro-structure of a battery cell and consists of the two 

solid electrodes, anode �a and cathode �c and the liquid elec- 

trolyte �e , i.e. � = �a ∪ �e ∪ �c . A domain for a separator is not 

included in the model. The union �s = �a ∪ �c is called the solid 

domain. Fig. 1 also introduces a domain decomposition with inter- 

face domains �ae , �ce and �se = �ae ∪ �ce . 

Fig. 1. Decomposition of a battery cell into anode �a , electrolyte �e , cathode �c 

and the interfaces �ae and �ce . 

2.1. Governing equations 

First the transport equations in the three domains �a , �e , �c 

are introduced separately. 

Electrolyte 

In Latz and Zausch (2011) the transport equations for ion con- 

centration c e and the electric potential φe in an electrolyte are 

given as 

∂ t c e − div 

(
D e ∇c e − t + 

z + F 
(κe ∇φ − κ

t + − 1 

z + F 

(
∂μe 

∂c 

)
∇c e ) 

)
= 0 , (x, y ; t) ∈ �e,T , (1) 

− div 

(
κe 

1 − t + 
z + F 

(
∂μe 

∂c 

)
∇c e − κe ∇φe 

)
= 0 , (x, y ; t) ∈ �e,T . 

(2) 

Table 1 gives numerical values for the electrolyte diffusion co- 

efficient D e , the electrolyte conductivity κe , the charge coefficient 

z + , the lithium transference number t + and the Faraday constant 

F . 

A logarithmically scaled chemical potential μe (c e ) = RT log c e 
c m 

is 

used to rewrite Eq. (1) . This gives the final governing equations in 

terms of the concentration c e and the electric potential φe in the 

electrolyte as 

∂ t c e − div 

((
D e 

RT 
c e + 

κe t + (t + − 1) 

F 2 

)
∇μe (c e ) + 

κe t + 
F 

∇φe 

)
= 0 , (x, y ; t) ∈ �e,T , 

−div 

(
κe (t + − 1) 

F 
∇μe (c e ) + κe ∇φe 

)
= 0 , (x, y ; t) ∈ �e,T . 

(3) 

This system of two equations consists of a parabolic equation 

and an elliptic equation ( Evans, 1996 ). 

Anode 

An electrochemical model for the transport of lithium ions in- 

side electrode material is taken from Latz and Zausch (2011) as 

∂ t c a + div (D a (c a ) ∇μa (c a )) = 0 , (x, y ; t) ∈ �a,T . (4) 

The anode diffusion coefficient D a ( c a ) is chosen depending on 

the local lithium ion concentration c as 

D a (c a ) = 

D 0 

RT 
c a 

(
1 − c a 

c m 

)
(5) 
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