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a b s t r a c t 

The exact solution of the problem of flexure of nonlinear-elastic composite beam with preliminarily 

strained layers is analyzed for large strains. The solution is obtained using the theory of superposition 

of large strains. Numerical results are shown for the Bartenev–Khazanovich material and for Biderman 

material. Nontrivial effects caused by nonlinearities are discussed. 
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1. Introduction 

In the first part of this paper ( Levin et al., 2015a ) the exact an- 

alytical solution for the problem of flexure of a composite beam 

with preliminarily strained layers is proposed. This solution is uni- 

versal in the class of isotropic, incompressible, nonlinear-elastic 

materials. The solution is obtained using the theory of superpo- 

sition of large strains ( Levin, 1988, 1998, 1999 ). The mathematical 

statement of the problem is written in coordinates of the inter- 

mediate state. The general approach to solution is proposed. It is 

described how to use the first integrals of the nonlinear theory of 

elasticity for solution; this method does not require the compu- 

tation of quadratures. The numerical results are given for three- 

layered beams and five-layered beams made of the neo-Hookean 

material. The dependencies of the flexural moment on the parame- 

ter describing the rotation angle of a given transverse cross-section 

of the bent beam are plotted for different values of principal ini- 

tial stretch. These dependencies are monotone and tend asymptoti- 

cally to finite limiting values as the curvature tends to infinity. The 

dependencies of the parameter describing the rotation angle of a 
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given transverse cross-section of the beam on the principal ini- 

tial stretch are given for the case in which the flexural moment 

is not applied to the beam. It is discovered that these dependen- 

cies are not monotone. This is a nontrivial effect, which can be in- 

terpreted as the existence of a limiting rotation angle of a given 

transverse cross-section of the unloaded beam with preliminarily 

strained layers. 

It is interesting to find out the specific features of the obtained 

solution for different constitutive equations, and to analyze the ef- 

fects of physical non-linearity. 

In the present part of the paper the results for the Bartenev–

Khazanovich (Varga) material and for the Biderman material are 

given. The specific features of the asymptotic behavior of the ob- 

tained solution are investigated under large strains. 

Note that these materials are incompressible. The incompress- 

ibility constraint simplifies the analytical solution significantly. The 

solution for incompressible, isotropic, nonlinear-elastic materials is 

based on a known universal solution ( Rivlin, 1949a, b; Truesdell, 

1972; Lurie, 1990 ). For compressible, isotropic, nonlinear-elastic 

materials there are no universal solutions, with the except for ho- 

mogeneous strain ( Ericksen, 1955; Truesdell, 1972 ). For a particular 

case of harmonic materials ( John, 1966 ) it is possible to find a so- 

lution ( Levin et al., 2015b ). The approach for solution in this case 

is briefly described in the end of Section 6 . 
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Fig. 1. The shape of a composite beam in the intermediate state. 

Let us recall the mechanical problem statement. Parallelepiped- 

shaped beams made of incompressible materials in the unstrained 

(initial) state are subjected to initial strain (tension or compres- 

sion) and are passed to the intermediate state. Although each 

beam has a homogeneous strain, it is different for each one. These 

beams are then joined ( Fig. 1 ). Ideal contact conditions hold over 

the joint surfaces. The moment of flexure is applied to the ends 

of the beam. After the junction, the composite beam is deformed 

as a whole and the flexure of the beam occurs due to the bending 

moment and the initial deformation of its layers. The beam passes 

to the final state. 

The results of solution of this problem may be used for model- 

ing of additive manufacturing processes, technologies for produc- 

tion of thin film composites, coated parts using chemical vapor 

deposition ( Pierson, 1999 ), spraying, atomic layer deposition, ion 

implantation. Stress and deformation of prestrained multilayer ac- 

tuators made of dielectric elastomers ( Brochu, 2012 ) can be ana- 

lyzed using the proposed approach. The results may also be used 

in biomechanics, for example, to analyze the stresses in growing 

biological membranes ( Rausch and Kuhl, 2013 ). And finally, the 

obtained solution is useful for the verification of a software for 

numerical solution of problems in which superposition of large 

strains takes place ( Levin et al., 2013 ). 

2. Nomenclature 

We use the notation that is typical for the theory of superim- 

posed large strains ( Levin, 1998 ): 
k 
r — the position vector of a particle in the k th state 
k ∇ 

— a gradient operator in coordinates of the k th state 

F k,n = 

k ∇ 

n 
r — the deformation gradient in transition from the k th 

state to the n th state 

C k,n — a tensor defining the strains associated with the tran- 

sition of a body from the k th state to the n th state (this tensor 

corresponds to Green’s deformation tensor) 

σ — the true stress tensor for the final state (the Cauchy stress 

tensor) 
k 

P 

— the first (nonsymmetric) Piola–Kirchhoff stress tensor in 

the base of the k th state 

W — the strain energy density function 

E — the identity tensor. 

I 1 and I 2 — the strain invariants ( Lurie, 1990 ) 

χ1 and χ2 — the material response functions 

p — the Lagrange multiplier 

f — the force resultant vector 

m — the moment resultant vector 

The dot is a sign of a tensor contraction and the superscript T 

is a sign of transposition. 

The colon is a sign of a double tensor contraction (for arbitrary 

second-rank tensors A and B , A : B = A mn B nm 

). 

The initial deformation gradient F 0,1 is further denoted as F init , 

and the additional deformation gradient F 1,2 is further denoted as 

F add . 

For brevity, the subscripts for the tensors describing the tran- 

sition from the initial state to the final state are omitted; thus for 

example, F 0 , 2 = F , C 0 , 2 = C . 

3. Mathematical statement of problem 

Three states (configurations) of the body are distinguished: the 

initial (undeformed) state; the intermediate state in which the 

body passes after the initial strain; final state in which the body 

passes after the junction of layers and the application of a bending 

moment. These states are numbered by indices 0, 1, and 2, respec- 

tively ( Levin, 1998; 1999 ). 

The statement of the problem is written in coordinates of the 

intermediate state and includes the following equations. 

The equilibrium equation (without body forces) ( Ciarlet, 1988; 

Truesdell and Noll, 2013; Lurie, 1990; Levin, 1998 ): 

1 ∇ 

· 1 

P 

= 0 . (1) 

The relation between different stress tensors: 

1 

P 

= ( det F add ) σ ·
(
F T add 

)−1 
. (2) 

The strain energy density function W and constitutive equations 

for incompressible, isotropic, nonlinear-elastic materials ( Ogden, 

1984; Lurie, 1990 ): 

W = W ( I 1 , I 2 ) , (3) 

1 

P 

= [ χ1 ( I 1 , I 2 ) + I 1 χ2 ( I 1 , I 2 ) ] F · F T init 

−χ2 ( I 1 , I 2 ) F · C · F T init − p 
(
F T add 

)−1 
, (4) 

χ1 = 2 

∂W 

∂ I 1 
, χ2 = 2 

∂W 

∂ I 2 
, I 1 = tr C , I 2 = tr (C 

−1 
) . (5) 

The incompressibility constraints are 

det F init = det F add = det F = 1 . (6) 

Kinematic equations ( Ogden, 1984; Areias et al., 2013; Lurie, 

1990; Levin, 1998 ): 

C = F T · F , F = F add · F init . (7) 

4. The initial deformation of the beam layers 

Consider the plane strain of a rectangular composite beam oc- 

cupying the region 0 ≤ x ≤ l , 0 ≤ y ≤ h in the reference con- 

figuration (in the intermediate state) ( Fig. 1 ). The Cartesian coordi- 

nates of a particle in the intermediate state are x, y , and z . The size 

on the z -axis is the same for all layers and is not significant. The 

beam consists on n layers; the k th layer occupies the region h k −1 ≤
y ≤ h k in the intermediate state ( 0 = h 0 ≤ h 1 ≤ · · · ≤ h n −1 ≤ h n = h ). 

The initial (preliminary) strain of the k th layer ( k = 1 , . . . , n ) is ho- 

mogeneous and given by the following deformation gradient: 

F init = λ(k ) i 1 � i 1 + λ−1 
(k ) 

i 2 � i 2 + i 3 � i 3 , λ(k ) = const . (8) 

Here i j are coordinate unit vectors. 

If the k th layer of the beam is not prestressed, then the inter- 

mediate state of this layer coincides with the initial state, λ(k ) = 1 , 

and F init = E . 

The materials of the composite-beam layers may be different. 

The strain energy density function of the k th layer ( h k −1 ≤ y < h k ) 

is denoted as W 

( k ) . The material response functions of this layer 

are denoted as χ(k ) 
1 

and χ(k ) 
2 

: χ(k ) 
1 

= 2 ∂W 

(k ) 

∂ I 1 
, χ(k ) 

2 
= 2 ∂W 

(k ) 

∂ I 2 
. 
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