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a b s t r a c t 

A mathematical model employing the concept of the energy-equivalent inhomogeneity combined with 

the method of conditional moments has been applied to analyze short-fiber composites. The fibers are 

parallel, randomly distributed, and their interphase is assumed to be adequately described by the Gurtin- 

Murdoch material surface model. The properties of the energy-equivalent fiber, incorporating properties 

of the original fiber and its interphase, are determined on the basis of Hill’s energy equivalence prin- 

ciple assuming its cylindrical shape. To describe random distribution of fibers a statistical method, the 

method of conditional moments, has been employed. Closed-form formulas for the components of the 

effective stiffness tensor of short-fiber reinforced composites have been developed which, in the limit, 

compare well with the results available in the literature for infinite parallel fibers with Gurtin-Murdoch 

interphase model. Influence of fiber length on contribution of the surface effects to the effective proper- 

ties of the material containing cylindrical cavities has been analyzed for all five independent components 

of its stiffness tensor, and for two sets of surface properties in the Gurtin-Murdoch model. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Technological advances in the area of composites with nano- 

size constituents have been paralleled by an increased interest in 

the effects of interphases. At nano-scale level, the ratio of the 

interphase volume to the volume of the material is higher than 

in more traditional materials and the radii of curvature of nano- 

components are smaller, both of which make the effects of inter- 

phases more pronounced and more important. 

There are various features of the interphases that may determi- 

nate their influence on the overall properties of the composite ma- 

terials. They include the difference between their properties and 

the properties of the constituents of the composite, their thickness 

in relation to the dimensions of those constituents, existence of the 

deformation-independent (residual) stresses that often exist when 

dissimilar materials are joined together, and various possible flaws, 

such as partial debonding. 

One model capturing effects important in nano-composites is 

the material surface model of Gurtin and Murdoch (1975, 1978) , 

(GM) (see also Benveniste and Miloch 2001 ). It assumes that the 

thickness of the interphase is negligible and that the resulting sur- 

face possesses its own material properties and residual stresses. 
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The model has been widely used in analysis of local effects in 

nano-composites ( Mogilevskaya et al., 2008; 2010 ) as well as in 

analysis of their overall properties (see Chen and Dvorak 2006; 

Chen et al., 2007; Duan et al., 2007a, 2007b ; among others). In 

the later contributions the GM model is employed to analyze the 

effective properties of random nano-composites containing infinite 

cylindrical fibers of nano-size diameter. 

All existing applications of the GM model were restricted to in- 

homogeneities consisting of spheres or infinite circular cylinders 

(affording two dimensional analysis). While that covers a num- 

ber of practically important cases, composites containing inhomo- 

geneities of other shapes do exist and their significance is likely 

to grow. For example, carbon nanotubes reinforced materials (CN- 

TRM), currently under a rather intense development ( Tserpes and 

Sylvester 2014 ), contain inhomogeneities in the form of fibers of 

various length. Their shape is better approximated by cylinders 

or prolate spheroids with high aspect ratio. In addition, previous 

studies of composites without interphases have shown that the re- 

sults based on those two geometric approximations are very close 

( Kari et al., 2007 ). In the effort to obtain closed-form solutions 

for the effective properties of the composites, this closeness is ex- 

ploited inhere and different geometric approximations are used in 

different aspects of analysis. So, extending application of the GM 

model to those (and other) shapes seems to be a timely endeavor, 

and it is precisely the topic of this work. 
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Analysis of heterogeneous materials including GM model of in- 

terphases and inhomogeneities of shapes other than spherical is 

complex independently of the method employed. In the case of 

spheroidal or cylindrical inhomogeneities of finite length involv- 

ing interphases, which are of immense practical significance (cf. 

Tserpes and Sylvester 2014 ), the numerical methods such as fi- 

nite element or boundary element methods are, arguably, the only 

currently available methods capable of handling the problem. And 

even those methods are faced with very serious limitations (cf. Ma 

and Kim 2011; Tserpes and Sylvester 2014 ). Somewhat more ver- 

satile, albeit approximate, is a recently presented approach based 

on the concept of the energy-equivalent inhomogeneity. It is built 

on the premise that a particle of any shape and its (thin) in- 

terphase with the matrix can be equivalently replaced by a sin- 

gle uniform inhomogeneity with suitably adjusted properties that 

is then perfectly bonded with the matrix. The properties of the 

equivalent inhomogeneity can be found using energy approach 

( Hill 1963 ), formulated considering specifics of the employed in- 

terphase model. Introduced in its general form by Nazarenko et al., 

(2015), Nazarenko and Stolarski (2016) the concept of the energy- 

equivalent inhomogeneity has so far been applied only to spherical 

inhomogeneities. However, that was done exclusively to prove the 

concept, as the existing solutions used for comparisons and valida- 

tions were available only for inhomogeneities of that shape. 

In this work the energy-equivalent inhomogeneity approach is 

applied to short fibers modeled as cylindrical inhomogeneities of 

finite length with GM model of interphases. In comparison with 

the prolate spheroid geometry of short fibers this geometric ap- 

proximation significantly simplifies development of their equiva- 

lent properties. It is subsequently combined with the method of 

conditional moments (MCM) to determine the effective proper- 

ties for composites containing unidirectional randomly distributed 

short fibers. Here, in turn, approximation of short fibers as prolate 

spheroids simplifies the analysis. This combination facilitates de- 

velopment of closed-form expressions defining all components of 

the effective stiffness tensor of the considered composite. To the 

authors’ best knowledge this is the first attempt to solve a problem 

of that type. Thus, to validate the proposed approach, the overall 

properties of unidirectional fibrous materials (i.e. containing infi- 

nite fibers) are obtained as a limiting case and compared with two- 

dimensional solutions of the problem, which are the only currently 

available results for cylindrical inhomogeneities with GM surface. 

In addition, relevance of the results presented in this paper to anal- 

ysis of composites with various other orientations of short fibers is 

discussed to demonstrate versatility of the proposed approach. 

With the above goals in mind the next section of the work 

briefly introduces the notion of energy equivalence and its sub- 

sequent specification for cylinders of finite length and GM model 

of interphases; properties of the equivalent inhomogeneity are de- 

fined. In Section 3 the basics of the MCM are outlined and the 

closed-form expressions for the effective properties of the unidi- 

rectional short-fiber composites are developed. This is followed by 

the numerical results and discussion, presented in Section 4 . The 

paper final section, Section 5 , contains some overall comments 

about the approach pursued herein and the results obtained. Sev- 

eral technical details are referred to Appendix A . 

2. Energy-equivalent short-fiber with Gurtin-Murdoch surface 

model 

2.1. General considerations 

To find properties of the equivalent inhomogeneity of any 

shape, meant to incorporate properties of the original inhomo- 

geneity and those of its interphase, the system is subjected to 

boundary displacements consistent with constant straining, repre- 

Fig. 1. Schematic illustration of cylindrical inhomogeneity. 

sented by an arbitrary constant tensor ɛ eq . The elastic energy of 

this system is 

E = 

1 

2 

∫ 
V 1 

ε 1 : C 1 : ε 1 d V 1 + E int , (2.1) 

where E int is the strain energy of the interphase, appropriate for 

the GM model, ɛ 1 is the strain within the original inhomogeneity 

caused by ɛ eq and C 1 is the rank four tensor of elastic moduli of 

the original cylindrical inhomogeneity ( Fig. 1 ). 

The mathematical description of energy equivalence is ex- 

pressed by the following equation 

E = 

1 

2 

∫ 
V eq 

ε eq : C eq : ε eq d V eq = 

1 

2 

V eq ε eq : C eq : ε eq 

= E int + 

1 

2 

∫ 
V 1 

ε 1 : C 1 : ε 1 d V 1 , (2.2) 

where C eq is the unknown constitutive tensors of the equivalent 

inhomogeneity and E int depends on the specific model of the inter- 

phase employed and on the data characterizing the system. Under 

the assumption of linearly elastic interphase, at equilibrium both 

terms on the far right hand side are quadratic functions of ɛ eq and 

Eq. (2.2) can be used to determine C eq . As shown in Nazarenko 

et al., (2015), Nazarenko and Stolarski (2016) that simple idea may 

be technically quite demanding, particularly for complex shapes of 

the inhomogeneity, but it is executable and in the cases considered 

so far leads to remarkably accurate, closed-form results. 

2.2. Gurtin-Murdoch surface model and associated elastic energy 

In the GM model the interphase is a surface assumed to be (lin- 

early) elastic and to possess its own distinct properties as well as 

its own residual stresses. Thus, in this case, the equivalent inhomo- 

geneity replaces the system consisting of the original inhomogene- 

ity and its elastic surface. As explained in the introduction, at this 

stage of the analysis a short-fiber is assumed to be a cylindrical in- 

homogeneity whose dimensions and the relevant Lamé parameters 

are shown in Fig. 1. 

Given that in the GM model of the interphase displacements 

are continuous (coherent), it follows that ε 1 = ε eq and – in the lin- 

ear case considered in this work – the energy of the system is (see 

details in Nazarenko et al., 2015, Nazarenko and Stolarski 2016 ) 

E = 

1 

2 

V 1 ( ε 1 : C 1 : ε 1 ) + 

1 

2 

∮ 
S int 

[ ε S : C S : ε S + τ0 ∇ S u : ∇ S u ] d S int . 

(2.3) 

In the above equation ∇ S u is the surface gradient of displace- 

ments, C S is the isotropic tensor of surface elasticity 

C S = 2 ̄μS 

4 

I S + ̄λS 

2 

I S �
2 

I S , (2.4) 
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