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a b s t r a c t 

An atomistically-meaningful pseudocontinuum representation for the nontrivial lattice dynamics of a fi- 

nite monatomic chain with linear elastic interactions between nearest neighbor atoms is analytically de- 

duced by mean of a dynamic mechanical analysis extending the memory-dependent pseudocontinuum 

viewpoint suggested in [M. Charlotte and L. Truskinovsky, Lattice dynamics from a continuum viewpoint , J. 

Mech. Phys. Solids, 60, pages 1508–1544 (2012)]. For a correct description of the lattice dynamics at its 

interstice length scale, the pseudocontinuum model integrates both the bulk and boundary inertial (heat- 

vibration) effects of the atomistic medium through specific modifications of the classical elastodynamic 

Newton’s law model: these modifications involve a generalization of the D’Alembert’s principle of inertial 

forces and Neumann-Robin’s boundary conditions, without increasing the number of initial and boundary 

conditions of the generic mechanical evolution problem, unlike all other generalized continuum models 

proposed in the literature up to this date. Owing to the spatially local and one-dimensional nature of 

the discrete and pseudocontinuum models, relationships are thus more clearly pinpointed between the 

elastodynamic normal stress field of that exact generalized continuum representation and the cohesive 

(or internal) and inertial forces operating at the lattice sites within the bulk of a finite-size monatomic 

chain and at its boundary. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

It has been already understood for long that, in order to 

reconcile the particle viewpoint with the continuum one, the 

solids with discrete/granular microstructures must be described 

with nonclassical continuum theories involving multiple length 

and time scales, and that in linear elasticity those ones are 

in part or essentially embedded into the phonon dispersion re- 

lations. Dispersive properties can be obtained in a continuum 

framework indeed with various enhancing ingredients such as 

spatial nonlocality ( Blanc et al., 2002; Charlotte and Truski- 

novsky, 2008; Eringen, 1972; Eringen and Eringen, 1976; Erin- 

gen and Kim, 1977; Fafalis et al., 2012; Jirásek, 2004; Kroner, 

1968; Krumshansl and Wallis, 1965; Kunin, 1982; Mindlin, 1964, 

1965; Pichugin et al., 2008; Rogula, 1982; Silling, 20 0 0; Suiker 

and de Borst, 2005; Sunyk and Steinmann, 2003; Toupin, 1962 ), 

temporal nonlocality ( Askes et al., 2008; Bishop, 1952; Char- 

lotte and Truskinovsky, 2012; Jirásek, 2004; Love, 2009; Metrikine 

and Askes, 2002a,b; Mindlin, 1964; Mindlin and Herrmann, 

1950; Mindlin and McNiven, 1960; Mühlhaus and Oka, 1996; 

Pichugin et al., 2008; Rayleigh, 1945 ) or/and multi-fields/modes 
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( Charlotte and Truskinovsky, 2008; Cosserat and Cosserat, 1909; 

Eringen, 1966; Eringen and Eringen, 1976; Eringen and Liebowitz, 

1968; Il’iushina, 1969; Kunin, 1982; Mindlin and Herrmann, 1950; 

Mindlin and McNiven, 1960; Vasiliev et al., 2010 ) while using dif- 

ferent kinematic and mechanic arguments. However, some of these 

enhanced continuum models lack of a physical reality or a mathe- 

matical consistency as they do not take into account correctly the 

dispersive, attenuating, and inertial effects related to the discrete 

distributions of masses ( Charlotte and Truskinovsky, 2012; Milton 

and Willis, 2007; Willis, 1981; Willis and Suquet, 1997 ). One can 

meet for instance some difficulties to ensure the stability of these 

continuum models with respect to short wavelengths ( Charlotte 

and Truskinovsky, 2008, 2012; Jirásek, 2004; Kunin, 1982; Pichugin 

et al., 2008; Rogula, 1982; Suiker and de Borst, 2005 ), or else to 

predict the filtering of high-frequency phonons that are linked to 

the natural capabilities of the aforementioned microstructured me- 

dia to dissipate certain singularities in the material particle mo- 

tions. 

Besides, and apart from the fact that it is not always clear 

how to consider initial and boundary/interfacial conditions for the 

prior enhanced continuum models (except by variational formu- 

lation when possible), another important difficulty for all these 

continuum-atomistic connections is to correctly relate quantities 
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Fig. 1. The generic monatomic chain and its pseudocontinuum reference domain S . 

such as strain and stress tensors between two levels, but also these 

same quantities to forces and displacements used in the molecular 

model ( Zimmerman et al., 2002, 2004, 2010 ). This may require in 

particular a correct atomistic interpretation of the local Cauchy’s 

or Piola-Kirchhoff’s stress tensors. That last nontrivial point has 

been a subject of great debate and controversy (see for instance 

Zhou, 2003 ). This important issue has been explored from many 

different perspectives for nearly two hundred years and has led to 

various definitions that do not appear to be consistent with each 

other; moreover those ones have not often fully appreciated the 

difference between pointwise stress measures and temporal and/or 

spatially-averaged quantities, as reported by Admal and Tadmor 

(2010, 2016) ; Murdoch (1982, 20 03, 20 07) ; Murdoch and Bedeaux 

(1993, 1994) ; Zimmerman et al. (20 02, 20 04, 2010) . Currently, 

there are at least three definitions for the stress tensor which are 

commonly used in atomistic simulations: the virial stress ( Clausius, 

1870; Maxwell, 1870, 1874 ), the Tsai’s traction ( Tsai, 1979 ) and the 

Hardy’s stress ( Hardy, 1982 ). Other coarse grained continuum mod- 

els use other averaged Cauchy’s stress definitions associated with 

the names of Irving and Kirkwood (1950) , Lehoucq and Lilienfeld- 

Toal (2010) ; Noll (1955, 2009) (which may be related to the one 

inferred for the peridynamics ( Lehoucq and Silling, 2008; Silling, 

20 0 0 )), or Murdoch and Bedeaux ( Admal and Tadmor, 2010, 2016; 

Murdoch, 1982, 20 03, 20 07; Murdoch and Bedeaux, 1993, 1994 ), 

to mention just a few them; those ones are in a general multi- 

dimensional Eulerian’s description of granular materials with arbi- 

trary pair potentials of interactions or central cohesive forces be- 

tween particles. 

At the margins of these different viewpoints, this work attempts 

to identify what kind of local atomistic stress concept can be asso- 

ciated with an accurate temporally nonlocal pseudocontinuum 

1 ( TN 

PC ) representation of a finite chain of particles with nearest neigh- 

bor harmonic interactions ( NNI ) like the one depicted on Fig. 1 , 

that is submitted to soft loading devices and where the surface 

dynamic pressure generated by the particle vibration at the chain 

boundary needs to be accounted for as well. The elastodynamics of 

this Born-Von Kármán’s finite, one-dimensional, monoatomic lat- 

tice corresponds to the simplest medium of simple structure , accord- 

ing to Kunin’s classification ( Kunin, 1982 ), since the only kinematic 

variable is a displacement (vector) that determines the state of the 

1 In nonlocal elasticity theories, the notion of pseudo-continuum, i.e. continuum 

theories incorporating internal space and time scales, was also called quasi- 

continuum in the sense of Krumshansl and Wallis (1965) , Kunin (1982) and Rogula 

(1982) (see also Eringen, 1982 ). Historically, this concept was introduced to treat 

discrete and continuous elastic models in the scope of the same formalism ( Kunin, 

1982 ), what fortuitously may help multi-scale numerical methods coupling (gen- 

eralized) continuous model with atomistic-lattice ones. Following partly the origi- 

nal idea of Kunin, the term quasicontinuum was later purposely borrowed and in- 

troduced in the computational mechanics by Shenoy et al. (1999) ; Tadmor et al. 

(1996) as a multi-scale numerical method coupling the classical continuum elasticity 

theory with the nonlocal atomistic-crystal lattice one. Developing such an averaging 

computational viewpoint is not however the purpose of this article. 

medium completely. However, from the continuum viewpoint, the 

fine dynamic behavior of such a simple lattice is in fact very com- 

plex already even in its linear regime due to the intrinsic occur- 

rence of multiple scales of length and times of evolution ( Brillouin 

and Parodi, 1956; Charlotte and Truskinovsky, 2008, 2012; Kunin, 

1982; Maradudin et al., 1971 ) (as hereinafter the two time-scales 

ω 

−1 ∗ and T ∗ and two length-scales a and L ) and to the importance 

of the micro-structural inertial forces. 

The aforementioned TN PC viewpoint that is on target here 

is the one introduced previously in Charlotte and Truskinovsky 

(2012) for an infinite lattice domain: it assumes that the non- 

trivial dynamics of the considered lattice model can be interpreted 

within that continuous framework by the presence of inertial 

and pseudo-dissipative post-Newtonian forces yielding a spatio- 

temporal blending of the inertial and elastic forces. Compared 

to Charlotte and Truskinovsky (2012) and the many numerical 

or analytical works that have dealt with the considered lattice 

model, this new analytical development shows two main nov- 

elties: firstly, the inertial forces of the lattice model induce an 

elastodynamic normal stress field satisfying nonstandard Neumann- 

Robin’s boundary conditions , with notably time-dependent properties 

in the TN PC model; secondly, the elastodynamic normal stress 

field of TN PC model can be related to a simple atomistic inter- 

pretation at the atom level. With this pseudocontinuum modeling, 

the dispersion of elementary wave-functions (or phonons) gener- 

ated by the singular loading pulses becomes possible and pro- 

hibits the propagation of singularities in S characterizing the well- 

known failure of the classical continuum ( CC ) theory under im- 

pact load or sudden unloading. Thus, by its salient features of 

memory-dependent/hereditary media (that have also been antici- 

pated for other dispersive vibrational properties of lattices and pe- 

riodic material systems such as metamaterials ( Milton and Willis, 

2007; Willis, 1981; Willis and Suquet, 1997 ) for instance), the TN 

PC contrast with the spatially nonlocal pseudocontinuum ( SN PC ) 

model proposed by Eringen (1972) ; Eringen and Eringen (1976) ; 

Eringen and Kim (1977) , Krumshansl and Wallis (1965) , Kunin 

(1982) , Rogula (1982) . Indeed that latter assumes clearly distin- 

guishable classical inertia and a strong spatial nonlocal elasticity 

yielding in fact a spatial blending of the bulk and boundary forces 

(as will demonstrate a subsequent article on this finite chain and 

boundary loading effects). Additionally, by not placing any restric- 

tion on the support of the applied loading in order to deal with 

point impact loadings as naturally as the original discrete theory, 

the TN PC model manages to overcome one major drawback of the 

derived SN PC model, which can be both applicable and accurate 

only for certain types of data that make the SN model inoperable 

and unenforceable with concentrated loads. 

This paper is organized as follows. As standard in continuum 

mechanics, the formulation of the TN PC model relies on a spe- 

cific space-time description of the particle system displacements. 

Section 2 begins therefore by reminding the main properties of the 

discrete chain motion and how the particle displacements u can 

be analytically expressed in terms of the one of the two “natural”

continuous interpolation fields G of the discrete impulse response 

of this mechanical model. To illustrate some specifities of the par- 

ticle displacements u , a couple of complementary tests are pur- 

posely performed, one is taken from a singular category and the 

other one is taken from a smooth category. Section 3 presents then 

the memory/history dependent continuum mechanics that can be 

derived from the molecular foundation to include the scale depen- 

dence of mass density and boundaries of solid bodies. The main 

steps of the derivation of that TN model are first discussed, based 

on the properties of the continuous kernel G . This yields integrod- 

ifferential equations of motion involving a generalized linear mo- 

mentum field I 1 [ u ], generalized normal stress field I ε [ u ] and the 

additional inertial forces I surf 
p [ u ] acting at the boundary. It is shown 
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