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a b s t r a c t 

An approach to multiscale modelling of the hydro-mechanical behaviour of geomaterials in the frame- 

work of computational homogenization is presented. At the micro level a representative elementary vol- 

ume (REV) is used to model the material behaviour based on the interaction between a solid skeleton 

and a pore fluid to provide the global material responses and associated stiffness matrices. Computational 

homogenization is used to retrieve these stiffness matrices from the micro level. The global response to 

deformation of the REV serves as an implicit constitutive law for the macroscale. On the macroscale, a 

poro-mechanical continuum is defined with coupled hydro-mechanical behaviour, relying on the consti- 

tutive relations obtained from the modelling at the microscale. This double scale approach is applied in 

the simulation of a biaxial deformation tests and the response at the macro level is related to the micro- 

mechanical behaviour. Hydromechanical coupling is studied as well as material anisotropy. To be able to 

study localization of strain, the doublescale approach is coupled with a local second gradient paradigm 

to maintain mesh objectivity when shear bands develop. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

The classical approach to modelling hydromechanical coupling 

in materials is the poromechanical description, founded on the pi- 

oneering work of Biot (1941) , in which a solid and a fluid contin- 

uum exist at the same material point and the behaviour of both 

continua and their interaction are modelled by phenomenologi- 

cal relations (for details, developments and a review see Coussy 

(1995) and Schanz (2009) ). The phenomenological relations of the 

poromechanical description are supposed to correctly represent the 

interaction between the solid skeleton and the pore fluid, that 

could be identified at a microscopic scale. These relations are read- 

ily available for cases in which material properties are constant, 

but for more complex behaviour, the formulation of constitutive 

relations and their implementation in numerical methods becomes 

more and more complex. An alternative approach to deriving the 

macroscale constitutive relations is to start from the underlying 

microstructural description, for which the different components of 

the material can be modelled explicitly and the interaction of the 

constituents can be defined based on physical considerations. 
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In this work, the framework of computational homogenization 

is used in the finite element squared (FE 2 ) method. On a mi- 

croscale level, the microstructure of the material is modelled in 

a representative elementary volume (REV), of which the homog- 

enized response serves as a numerical constitutive relations in the 

macroscale continuum. This framework was initially introduced 

for the modelling of microstructural solids of different nature 

( Feyel and Chaboche, 20 0 0; Kouznetsova et al., 2001; Miehe and 

Koch, 2002; Terada and Kikuchi, 1995 , see also Schröder, 2014 for 

an extensive overview) and later extended to multiphysics cou- 

plings, starting with thermomechanical coupling by Özdemir et al. 

(20 08a ); 20 08b ). Aspects of hydromechanical coupling were stud- 

ied using computational homogenization by Massart ( Massart and 

Selvadurai, 2012; 2014 ), and doublescale computations with com- 

putational homogenization of hydromechanical coupled behaviour 

were studied in Mercatoris et al. (2014) and Jänicke et al. (2015) . 

These methods all describe first-order computational homog- 

enization schemes, taking into account only the first gradient of 

the kinematics fields, which allows the full incorporation of the 

separation of scales. This means that the length scale of the 

kinematical gradients at the macroscale is much larger than the 

microstructural REV, such that the REV represents the material 

point behaviour. The result of the separation of scales is that no 
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macroscopic length scale can be taken into account and the 

method is limited to the classical continuum mechanics theory 

( Geers et al., 2010 ). As a result, a continuum approach has to 

be maintained at the macroscale throughout the computation. To 

overcome these limitations of the classical continuum theory, the 

method was extended to second-order computational homogeniza- 

tion ( Feyel, 2003; Kouznetsova et al., 2004 ), deriving the classical 

part of the constitutive behaviour as well as the higher gradient 

part, thereby directly linking the length scales between micro and 

macroscale. With these enrichments, objectivity of the solutions 

with respect to the mesh was restored at the cost of losing the 

separation of scales. 

Additional approaches were presented for micromorphic con- 

tinua ( Jänicke et al., 2009 ), while others have abandoned the 

macroscale continuum formulation and introduced discontinuous 

modes of deformation ( Coenen et al., 2011a; Mercatoris and Mas- 

sart, 2011; Nguyen et al., 2011; Toro et al., 2014 ). However, the 

application of these discontinuous modes of deformation at the 

macroscale could lead to complications in case of multiphase cou- 

plings and the restriction to a macroscale continuum is therefore 

preferred in this work. 

At the macroscale, difficulties arise in the classical formulation 

when softening response is to be considered, and the well-known 

mesh-sensitivity appears with the loss of ellipticity of the equilib- 

rium equations ( Pijaudier-Chabot and Ba ̂ zant, 1987 ). To restore the 

well-posedness of the macroscale problem, an enrichment of the 

kinematical constraints is required. This enrichment has to allow 

the use of any classical constitutive relation, both for the mechani- 

cal and the hydraulic behaviour and its coupling, since the compu- 

tational homogenization will provide a constitutive relation in the 

most general form. 

In this work a computational homogenization approach is in- 

troduced for the homogenization of microscale solid-fluid interac- 

tion to obtain a macroscale poromechanical description. The mi- 

croscale model is based on the work of Frey et al. (2012) . It de- 

scribes the interaction between the solid skeleton and pore fluid 

in a REV, without relying on phenomenological coupling relations 

at the microscale. For upscaling the hydromechanical coupled re- 

sponse to kinematic loading of the REV, the framework of compu- 

tational homogenization ( Kouznetsova et al., 2001 ) is extended to 

take into account the hydromechanical coupled behaviour. The re- 

sulting numerical constitutive relation is coupled with a local sec- 

ond gradient paradigm for hydromechanical coupling ( Collin et al., 

2006 ). With the decomposition assumption between first and sec- 

ond gradient parts of the constitutive equations ( Chambon et al., 

2001 ), the continuum can be combined with any classical consti- 

tutive relation for hydromechanical coupling. 

The paper is structured as follows; Section 2 presents the 

macroscale formulation of the poromechanical continuum with 

the local second gradient model. Section 3 introduces the frame- 

work for the REV derived from the assumption of local periodicity 

and introduces the micromechanical model. Section 4 provides the 

formulation of the computational homogenization for hydrome- 

chanical coupling based on the Hill-Mandel macro-homogeneity 

principle to derive the definitions of homogenized macro re- 

sponse. An example of the application of the model is given in 

Section 5 on the modelling of biaxial compression under transient 

conditions. The paper closes with some concluding remarks in 

Section 6 . 

2. Macroscale formulation of the saturated poromechanical 

continuum in finite deformation 

As it is the ambition to apply the method on localiza- 

tion problems with material softening, an enhancement of the 

macroscale continuum is required to maintain the objectivity of 

the macroscale formulation in the softening domain. Many regu- 

larization methods were proposed for this purpose, either based on 

a nonlocal averaging ( Pijaudier-Chabot and Ba ̂ zant, 1987 ), gradient 

plasticity theories ( Aifantis, 1984 ) or based on micromorphic me- 

dia ( Germain, 1973 ) of which many specific cases can be derived. 

The most famous of these cases is the micropolar continuum, bet- 

ter known as the Cosserat medium ( Cosserat and Cosserat, 1909 ). 

Here, the local second gradient paradigm ( Chambon and Caillerie, 

1999; Germain, 1973; Matsushima et al., 2002 ) is chosen, which is 

a specific case of micromorphic medium in which the microkine- 

matic gradient ν ij is constrained to be equal to the macro dis- 

placement gradient ∂ u i / ∂ x j . The weak form balance equation can 

be written with Lagrange multipliers to avoid the use of C 1 shape 

functions for the displacement fields ( Chambon et al., 2001 ): 
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with W̄ 

� 
e the external virtual work as an effect of the boundary 

traction t̄ and the boundary double traction T̄ . Superscripts t and 

� 

denote quantities at time t and virtual quantities respectively; σ t 
i j 

are the components of the Cauchy stress tensor, �t 
i jk 

are the com- 

ponents of the double stress tensor. In addition, the constraint on 

the microkinematical tensor ν, with components ν ij , requires the 

additional balance equation with respect to the Lagrange multiplier 

fields λij : 
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The balance equation for the fluid part of the problem is formu- 

lated without the gradient enhancement. In absence of sink terms 

and neglecting gravitational influences, this gives: 
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where m 

t 
i 

are the components of the fluid mass flux. The exter- 

nal virtual work R̄ � e is the combined effort of the boundary fluid 

mass flux m̄ 

t = m i n i ( n i being the components of the boundary 

normal outward vector �
 n ) and possible sink terms Q 

t . M is the 

specific mass of the fluid phase with 

˙ M its time derivative and 

p is the pore pressure. The iterative search to a configuration �t 

for which (1) to (3) hold entails looking for a configuration �τ2 

that corrects for the residual terms W 

τ1 
res , T 

τ1 
res and R τ1 

res correspond- 

ing to (1), (2) and (3) respectively from a preceding test solution 

of configuration �τ1 , using a full Newton-Raphson procedure. De- 

velopment of the iterative procedure in an updated lagrangian for- 

mulation (with respect to configuration τ1), leads to the follow- 

ing combined expression of iterative update d � between �τ1 and 

�τ2 (see Matsushima et al., 2002 and Collin et al., 2006 for full 

details): 
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The column vector [d U 

τ1 ] contains subsequently the terms 
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, with d[.] τ1 the differ- 

ence between subsequent iterative test solutions [.] τ1 and [.] τ2 . The 

23 × 23 matrix [ E τ1 ] can written as 
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