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a b s t r a c t 

Rheological models are often used to exemplify the structure of phenomenological material models. For 

this purpose, different elements, representing elastic, viscous or plastic material behaviour, are combined 

in parallel and series connections. This article introduces a concept to material modelling within the 

framework of multiplicative decomposition of the deformation gradient. Thereby, the basic idea of rhe- 

ological connections is directly applied. Assuming the additive decomposition of the stress power, rela- 

tions for parallel as well as series connections are derived and the thermodynamic consistency of the 

concept is proved. To exemplify the modelling concept, an existing viscoplastic model of overstress type, 

which is motivated by a rheological model, is reviewed and reproduced. To this end, specific nonlinear 

material models representing elastic, viscous and plastic material behaviour are applied in a thermody- 

namically consistent manner and the connection relations are evaluated. Finally, a numerical procedure is 

proposed, which implements the connection relations directly rather than solving the evolution equations 

for inelastic strains. Both the analytical derivation and the numerical procedure based on the connection 

relations yield equal results compared to standard methods, which highlights the applicability of the pre- 

sented concept for the development of models of multiplicative inelasticity at large strains. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Rheological elements and connections often represent the basis 

in the development of complex material models. According to 

this modelling concept, rheological elements, symbolising elastic, 

viscous or plastic material behaviour, are connected in such a way 

that inelastic material models can be deduced ( Reiner, 1968 ). To 

this end, kinematic relations of the partial deformations as well 

as stress equilibrium equations are formulated and evaluated. 

Fundamentals for the derivation of such material models for the 

case of geometrically linear problems can for example be found in 

Reiner (1968) , Visintin (2006) , and Altenbach (2012) . Applications 

to the simulation of specific material behaviour are described 

in Kletschkowski et al. (2001) , Bröcker and Matzenmiller (2012, 

2013) , among others. 

In the context of nonlinear continuum mechanics, one famous 

approach for the derivation of inelastic material models is the 

multiplicative decomposition of the deformation gradient (see, for 

instance, Kröner, 1959/1960 ; Lee, 1969 ). Here, the elastic parts are 

constituted by a free energy function and an evaluation of the 

Clausius–Duhem inequality leads to thermodynamic restrictions 
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imposed on the constitutive equations. Based on these restrictions, 

the inelastic flow behaviour has to be considered by proper 

formulations of evolution equations. Different material models 

including elastic, viscous and plastic properties can be realised 

with this approach (see, e.g., Dettmer and Reese, 2004; Gurtin 

and Anand, 20 05; Hartmann, 20 06; Haupt and Sedlan, 20 01; Lion, 

20 0 0; Shutov and Kreißig, 2008b; Shutov et al., 2013; Simo and 

Hughes, 1998 ). 

The idea of relating models of multiplicative inelasticity to 

rheological elements has been advanced by Lion (1998, 20 0 0) (see 

also Haupt (2002) ). Thereby, the structure of complex material 

models is explained by rheological elements and connections. Nev- 

ertheless, the derivation of constitutive equations is done by the 

common procedure described above. This approach of illustrating 

models of multiplicative inelasticity has been adopted by many 

authors (see, e.g., Ayoub et al., 2010; Dettmer and Reese, 2004; 

Khajehsaeid et al., 2014; Lejeunes et al., 2011; Pouriayevali et al., 

2013; Rodas et al., 2016; Shutov and Kreißig, 2008b ). 

There are also approaches directly adopting the basic idea of 

rheological connections. This includes the formulation of kinematic 

and kinetic connection relations and the evaluation by the help of 

specific constitutive models for the single elements. In this context, 

the application of a parallel connection within models at large 

strains results in a summation of stresses since different elements 
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Nomenclature 

K Current configuration ˜ K Reference configuration 

ˆ K , Ǩ Intermediate configurations 

C = Right Cauchy–Green tensor (see Eq. (2) ) 

D = Strain rate tensor (see Eq. (4) ) 

F = Deformation gradient 

I = Identity tensor 

L = Velocity gradient (see Eq. (3) ) 

b = Left Cauchy–Green tensor (see Eq. (2) ) 

σ= Cauchy stress tensor 

τ= Kirchhoff stress tensor (see Eq. (11) ) ˜ T = Second Piola–Kirchhoff stress tensor (see 

Eq. (11) ) ˜ X , ˆ X , X̌ Quantities operating on 

˜ K , ˆ K and Ǩ , respectively 

i 
X 

Quantity of the i th partial deformation 

S 
X = 

Symmetric part of a second-rank tensor 

X = 
′ Deviatoric part of a second-rank tensor 

h 
X = 

Hydrostatic part of a second-rank tensor 

X = Unimodular part of a second-rank tensor 

V 
X = 

Volumetric part of a second-rank tensor 

G 
X = 

Distortional part of a second-rank tensor 

�
X = 

Lagrangian time derivative 

X = 
�, X = 

∧ 
�, Mixed contravariant-variant Oldroyd rate with 

respect to K and 

ˆ K , respectively 

f 
((

X = 
))

Tensor valued function of a tensorial argument 

S(( . . . )) Translation operator (see Eq. (20) ) 

〈 . . . 〉 Macaulay brackets 

[ . . . ] (6) Components of a second-rank symmetric tensor 

represented in a six-row vector (see Eq. (103) ) 

{ I k } k =1 , 2 , 3 System of invariants of a second-rank tensor (see 

Eq. (1) ) 

J 1 , J 2 First and second principal invariant of 
G 

C = (see 

Eq. (51) ) 

J 3 Third principal invariant of F = (see Eq. (12) ) 

P Sp Stress power (see Eq. (13) ) 

d V Differential volume 

� Yield function (see Eq. (62) ) 

ρ Mass density 

σ F Initial yield stress 

ϕ Inelastic arc length (see Eq. (65) ) 

are defined with respect to one single partial deformation. This 

straight forward utilisation is applied for example by Bergström 

and Boyce (1998, 20 0 0) , Boyce et al. (20 0 0) , Silberstein and Boyce 

(2010) , Liu and Hoo Fatt (2011) , Shim and Mohr (2011) , Ge et al. 

(2014) , Abdul-Hameed et al. (2014) ). Moreover, the parallel net- 

work model proposed by Bergström and Boyce (1998) is already 

available in the commercial finite element code Abaqus. Thus, a 

wide range of material models based on a parallel connection 

of an arbitrary number of rheological elements can be regarded 

(see Abaqus, 2013; Hurtado et al., 2013 ). However, this model and 

its implementation are restricted to a special class of rheological 

structures, i.e. the parallel connection of different elements. 

In contrast, the treatment of the multiplicative decomposition 

of the deformation gradient, being interpreted as a series connec- 

tion, is a more challenging task. Here, appropriate stress measures 

on the connection configuration have to be identified. An early 

work dealing with this topic is given by Krawietz (1986) . Therein, 

specific connection relations for the parallel and series connec- 

tions within the framework of multiplicative decomposition of the 

deformation gradient are formulated. Moreover, Gurtin (20 0 0) and 

Gurtin and Anand (2005) utilise the principle of virtual power to 

develop a continuum theory for the elastic-viscoplastic deforma- 

tion of amorphous solids. Assuming incompressible, irrotational 

plastic flow, the evaluation of the according macroscopic and 

microscopic force balances yields relations between the internal 

forces associated with the responses of the material, which can be 

interpreted as kinetic relations of rheological connections (see also 

Gurtin and Anand, 2005; Henann and Anand, 2009 ). Examples 

of application can be found in Anand et al. (2009) , Ames et al. 

(2009) , and Balieu and Kringos (2015) . A general approach for the 

derivation of models of multiplicative inelasticity by rheological 

connections is given by Ihlemann (2014) . Based on the multiplica- 

tive decomposition of the deformation gradient and the stress 

equilibria, general relations for the stresses are derived. Moreover, 

specific models for elastic, viscous and plastic material behaviour 

are formulated. An evaluation of these basic models according 

to the connection relations yields different elementary models 

of multiplicative viscoelasticity and elastoplasticity. Bröcker and 

Matzenmiller (2014) present a similar approach. However, contrary 

to Ihlemann (2014) , they postulate the balance of the stresses and 

consider the decomposition of the stress power as a result (see 

also Bröcker, 2014 ). 

The connection relations formulated by Ihlemann (2014) enable 

the development of an alternative numerical solution procedure. 

In Landgraf and Ihlemann (2012) , the application of Ihlemann’s 

concept to a famous model of multiplicative viscoelasticity of 

Maxwell type is considered. Besides the analytical derivation of 

constitutive equations, a numerical implementation directly acting 

on the connection relations is presented. Instead of solving evolu- 

tion equations, the connection relations are numerically evaluated 

by the Newton–Raphson method. 

The article at hand addresses the fundamentals of Ihlemann’s 

concept and the alternative numerical implementation by Landgraf 

and Ihlemann (2012) . First, the general connection relations of 

parallel and series connections are given and the thermodynamic 

consistency is proved. Next, these relations are specified for the 

application within nearly-incompressible formulations. Subse- 

quently, individual material models, i.e. the rheological elements, 

are defined in form of stress–strain relations or stress–strain rate 

relations. 

The approach is illustrated by reviewing an application exam- 

ple. Here, the viscoplastic material model of overstress type with 

nonlinear kinematic hardening by Shutov and Kreißig (2008b ) is 

examined. The analytical compliance of the constitutive equations, 

derived by the classical approach on the one hand and by the 

concept of rheological connections on the other hand, is shown. 

Furthermore, the numerical implementation based on rheological 

connections by Landgraf and Ihlemann (2012) is extended. Finally, 

this procedure is applied to Shutov and Kreißig’s material model. 

The simulation results are compared with the predictions obtained 

by the standard solution method. 

Throughout this article, underscored symbols denotes tensors 

in R 

3 , whereby the number of underscores represents the rank of 

the tensor. Let I = be the second-rank identity tensor. A full system 

of invariants of a second-rank tensor is defined by 

I 1 
(
A = 
)

:= A = · · I = , I 2 
(
A = 
)

:= 

1 

2 

[ 
I 1 
(
A = 
)2 − I 1 

(
A = 

2 
)] 

and 

I 3 
(
A = 
)

:= I 1 
(
A = 
)
I 2 
(
A = 
)

− 1 

3 

[ 
I 1 
(
A = 
)3 − I 1 

(
A = 

3 
)] 

. (1) 

Here, “ · · ” denotes the double contraction of two second-rank 

tensors, according to A = · · B = := tr 
(
A = · B = 

)
. tr( ·) is the trace of a 
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