Author's Accepted Manuscript

Carbon dioxide permeability of building materials and their impact on bedroom ventilation need

Timo Niemelä, Juha Vinha, Ralf Lindberg, Tiina Ruuska, Anssi Laukkarinen

elsevier.com/locate/iob/

PII: S2352-7102(16)30382-5

DOI: http://dx.doi.org/10.1016/j.jobe.2017.05.009

JOBE268 Reference:

To appear in: Journal of Building Engineering

Received date: 28 December 2016

Revised date: 3 May 2017 Accepted date: 9 May 2017

Cite this article as: Timo Niemelä, Juha Vinha, Ralf Lindberg, Tiina Ruuska anc Anssi Laukkarinen, Carbon dioxide permeability of building materials and their impact on bedroom ventilation need, Journal of Building Engineering http://dx.doi.org/10.1016/j.jobe.2017.05.009

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain

ACCEPTED MANUSCRIPT

Carbon dioxide permeability of building materials and their impact on bedroom ventilation need

Timo Niemelä, Juha Vinha, Ralf Lindberg, Tiina Ruuska and Anssi Laukkarinen*

Department of Civil Engineering, Tampere University of Technology, Finland

*Corresponding author: Anssi Laukkarinen, Department of Civil Engineering, Tampere University of Technology, P.O. Box 600, 33101 Tampere, Finland. Email: anssi.laukkarinen@tut.fi

Abstract

This research determined the carbon dioxide permeabilities of different materials and cellulose-insulated wall structures without a vapour barrier as well as the CO₂ balance of bedroom air. Material tests have indicated that the CO₂ permeabilities of building materials correlate closely with their water vapour permeabilities. Thus, the more permeable the external wall structures are, the bigger their impact on the CO₂ content of indoor air. Yet, higher permeability allows more water vapour to pass through the structures, which make them more at-risk for condensation and mould growth. Some

Download English Version:

https://daneshyari.com/en/article/4923145

Download Persian Version:

https://daneshyari.com/article/4923145

<u>Daneshyari.com</u>