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A friction element is presented in this paper. The element was incorporated into a simplified numerical model of
cables, which were established by a beam element. A detailed numerical model was implemented based on
general-purpose finite element software. Moreover, a flowchart of a numerical analysis was proposed. The
accuracy of the proposed numerical model was validated by comparing the results derived in this work to the
analytical results derived from Costello's theory and experimental results. The bending performance of 1 × 37
semi-parallel wire cables was investigated. Then, the dynamic response of cable caused by wire break was
analyzed. Sensitivity analysis was conducted to investigate the influence of several factors on dynamic response.
Results indicated that the friction element proposed in this paper can capture the sliding among different wires
and thus can be efficiently adopted in dynamic analysis.
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1. Introduction

Stranded cables are used in a wide variety of applications for struc-
tural engineering and power and signal transmissions [1]. Spiral wire
rope strands are groups of wires laid helically in successive layers over
a straight center wire in a regular geometric pattern to form an integral
unit to provide axial strength and stiffness [2].

The cables are constantly the key components that determine the
safety of the entire structures. Themechanical property of strand cables
is equally complex as the existing complex interactions among cable
wires. Many investigations have been conducted on the mechanical
behavior of strand cables on the basis of elaborate numerical models
[3,4]. Utting and Jones [5,6] developed amathematicalmodel of a strand
to explore the change in helix angle under load, effects of Poisson ratio
on wires, wire flattening under interwire pressure, and effect of friction
between the core and helical wires. Nie et al. [7] proposed a cable
anchorage system modeling method for self-anchored suspension
bridges through multi-scale modeling technology. The cable equivalent
proportional damping parameters and periodic excitation functions
resulting from the crossover cable motion on the winder drum were
identified in this work. Jiang proposed a concise finite element model
for three-layered straight wire rope strand. However, the numerical
model was still established by solid elements [2,8]. Montoya et al. [9]

proposed a simplified semi-analytical contact–friction approach. Elasto-
perfectly plastic springs were placed at the contact points between the
wires tomodel the load transfer due to friction between tightened paral-
lel steel wires. Hong et al. [10] developed amesoscale mechanical model
of the bending behavior of helically wrapped cables under tension. The
model represents the nonlinear dissipative behavior of the cable arising
from the slippage of wires under friction forces. Sun et al. [11,12]
analyzed the effects of friction coefficient and self-rotating ratio on the
contact stress based on FE simulation.

Cables are the key components of structures. Thus,many researchers
have conducted investigations on this problem [13,14]. Torkar and
Arzensi [15] conducted the failure analysis of a broken multi-strand
wire rope froma crane. Elata et al. [16] handled themechanical behavior
of a wire ropewith an independentwire rope core. In their recentwork,
Shen et al. [17] performed fretting wear tests on the self-made fretting
wear rig to investigate the fretting wear behaviors of steel wires under
friction-increasing grease conditions.

For investigations on the dynamic response of strand cables,
Chen et al. [18] adopted Euler–Bernoulli beam model to develop the
governing equations of the cable and considered bending stiffness to
manage the low-tension problem in the local area of a towing cable.
An accurate solution considered the axial elongation. Kaczmarczyk
and Ostachowicz [19] proposed a simulation model that investigated
the dynamic response of a deep mine hoisting cable system during a
winding cycle.

Many researchers have conducted numerous works to improve the
numerical model of strand cables. The present work aims to develop a
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numerical model based on general-purpose finite element software.
The friction element that can be adopted in the dynamic analysis was
proposed. The dynamic response of the cable after wire break was ana-
lyzed. In addition, the influence of friction on the bending performance
of cables was investigated.

2. Establishment of a numerical model

2.1. Theoretical model of friction element

Friction occurs along the contact line of different wires. It can be
influenced by normal force and friction coefficient among different
wires. Contact behavior among different wires can be captured by
establishing a detailed numerical model containing contact elements.
However, this method requires robust computing power, and only a
small numerical model can be analyzed to date. Finite element concept
can be adopted to overcome this problem.

The cables can be divided into numerous segments along the cable
length, and the length of each segment is Δl, as illustrated in Fig. 1.
Then, the small wire segment is considered the research object. The
stress diagram of one wire segment is depicted in Fig. 2.

The internal forces of a wire segment include force and moment
in three orthogonality directions. In addition, the wire segment is also
subjected to force from neighboring wires, including normal stress, σn,
and friction. The friction can be decomposed into f1 and f2. The direction
f2 is along the cable axial direction, and f1 is perpendicular to cable axial
direction. The value of σn within Δl can be considered a constant. Then,
normal force and friction can be derived according to Eqs. (1) and (2).

The wire segment was assumed to contact with one neighboring
wire through two points. Then, the contact stress can be transformed
into a contact force, as displayed in Fig. 2. Normal forces at points 1
and 2 are FN

1 and FN
2, respectively. The sum of the two normal forces

should be equal to the original value tomaintain the equilibrium condi-
tion of forces. Therefore, the right part of Eq. (1) can be derived. Then,
friction forces f1 and f2 at points 1 and 2 can be derived, correspondingly.
The friction at two contact points can be decomposed into two direc-
tions similarly. Then, Eqs. (3) and (4) can be derived.

ΔFn ¼ σn � Δl ¼ FN
1 þ FN

2 ð1Þ

f 1 ¼ μ σn � Δlð Þ � cos β; f 2 ¼ μ σn � Δlð Þ � cosγ ð2Þ

f 1
1 ¼ μ FN1 � cos β; f 2

1 ¼ μ FN1 � cosγ ð3Þ

f 1
2 ¼ μ FN2 � cos β; f 2

2 ¼ μ FN2 � cosγ; ð4Þ

where α, β, and γ are cable geometrical parameters.
Eq. (5) can be derived through Eqs. (2), (3), and (4). The equivalence

of friction can be ensured. All of the contact forces can be equivalent
automatically if the other forces are maintained.

f 1 ¼ f 1
1 þ f 1

2
; f 2 ¼ f 2

1 þ f 2
2 ð5Þ

Two contacting surfaces can carry shear stresses in the basic
Coulomb friction model. No motion occurs between the two surfaces
when the equivalent shear stress is less than the limit frictional stress
(flim). This state is known as sticking. The model defines an equivalent
shear stress at which sliding on the face begins as a fraction of the
contact pressure. The two faces will slide relatively with each other
once the shear stress is exceeded. The coefficient of friction can be any
non-negative value [20,21].

The Coulomb friction model is defined as.

f lim ¼ μ Fn þ b; fk k≤ f lim; ð6Þ

where flim is the limit frictional force, μ is the coefficient of friction, Fn is
the contact normal force, and b is the contact cohesion. The equivalent
frictional force can be defined as

fk k ¼
fj j equivalent friction for 2D contactffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f 1
2 þ f 2

2
q

equivalent friction for 3D contact

8>><
>>:

; ð7Þ

where f1 and f2 are considered in the tangential contact plane between
the wires. The contact and target surfaces will slide relatively with
each other once the equivalent frictional stress exceeds flim. This state
is known as sliding.

The normal distributed force Fn and the tangential distributed forces
f1 and f2 exist along any line of contact among the helical wires, as
presented in Fig. 3.

The adopted nonlinear friction element should capture themechan-
ical characteristic of friction, i.e., the friction value was relevant to
frictional coefficient and normal force, and the direction of friction
depends on relative motion tendency. The value of a static friction
force can be determined by the equilibrium condition of forces.

The nodal displacement vector of two-node friction elements can be
written as [22].

δf gT ¼ ui; vi;wi;uj; vj;wj
� �

: ð8Þ

If θ1, θ2, and θ3 are the angles of friction element with global coordi-
nate system after deformation, then

cos θk ¼ xik þ uik−xjk−ujk
� �

=L; k ¼ 1;2;3; ð9Þ

where L is the length of friction element after deformation.
The internal force F of a spring element can be derived according to

the predefined load–deflection curve.
The friction can be decomposed along a coordinate axis.

Fik ¼ − cos θk; Fjk ¼ − cos θk; k ¼ 1;2;3 ð10Þ

The displacement of a 3D two-node friction element can be repre-
sented through nodal displacement and shape functions.

u ¼ 1
2

ui 1−sð Þ þ uj 1−sð Þð Þ ð11Þ

l

Fig. 1. Segmentation along the cable length.
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Fig. 2. Equivalent normal stress.
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