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A B S T R A C T

A finite element based numerical procedure for predicting the plastic collapse load as well as the plas-
tic collapse mechanism of beam-to-column steel joints is presented. The promoted procedure is based on
two methods following the static and the kinematic approach of limit analysis. Both methods have been
rephrased for a von Mises type material in the deviatoric plane and in terms of deviatoric stress invari-
ants. The key concepts are: i) in the static formulation, to mimic the stress redistribution arising within
a structure approaching its critical (collapse) state, such stresses being in equilibrium with the maximum
redistributable loads; ii) in the kinematic formulation, to build a plastic collapse mechanism characterized
by compatible strain and displacement rates corresponding to a minimum value of loads doing positive work
equal to the total plastic dissipation. A validation of the numerical results is pursued by comparison with
experimental findings on real scale prototypes of the tackled steel joints. Future developments are outlined
at closure.

© 2017 Elsevier Ltd. All rights reserved.

1. Research context, motivations and main goals

The structural analysis of steel joints is nowadays a matter solved
by any commercial numerical code in the engineering fields. Both
the constitutive behavior of steel and the post-elastic behavior of
steel structural components are successfully described by commer-
cial finite element (FE) codes in statics or in dynamics also in the
presence of damaging processes. Sophisticated step-by-step and/or
time-stepping algorithms are available robust tools to handle the
analysis of steel structures. Also the accuracy and computational per-
formance of such algorithms, when dealing with only-steel elements,
is certainly the more competitive. So that, the here claimed evalu-
ation of the plastic collapse load for welded beam-to-columns steel
joints, avoiding the description of the post-elastic behavior of the
addressed steel structural elements, might appear even outdated.

The problem here in mind is however related to the use of those
steel structural components as parts of more complex structural
systems characterized by the presence of other structural elements
made of materials whose constitutive as well as post-elastic behavior
is not easy to handle or it is described by criteria not possess-
ing the necessary general applicability. This is actually a recurrent
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circumstance when dealing, for example, with seismic retrofitting
of masonry or reinforced concrete existing structures often pursued
by strengthening techniques which insert moment resistant steel
frames or steel bracing systems, see e.g. [1], [2], [3], [4] and ref-
erences therein. A similar circumstance appears also in composite
steel-concrete structures, [5], [6], or in new composite steel-concrete
structural elements as, for example, in concrete filled welded steel
columns [7], [8], [9], [10] or in steel ribs for strengthening of steel
concrete joints [11], or in composite beams [12], also in the pres-
ence of other materials of common use nowadays as fiber reinforced
polymers [13].

The above list of papers, far to be exhaustive, gives the idea of the
research context hereafter referred in which a conflict in the adopt-
able design methodologies arises. From one side, steel members and
their mutual joints are described by well known constitutive crite-
ria, as von Mises for example, and can be handled by plasticity or
damage theories fully implemented in nonlinear FE codes. From the
other side, structural elements made of masonry or concrete, whose
constitutive as well as post-elastic behavior is not uniquely defined
being also affected by the constructive techniques, are often treated
with FE codes whose results are valid only for very particular cases or
structural typologies. In this context a direct method, as Limit Anal-
ysis, with all its congenital limitations, can result more reliably to
predict a limit load of plastic collapse for steel members and of rup-
ture for the other ones giving rise to a complete and effective limit
states design approach.
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The present work finds and tries motivations on the above con-
siderations and, as a first step of the study, presents a limit anal-
ysis FE based procedure applied to steel joints. It is worth noting
that, looking at a real engineering practical context, limit analy-
sis has to be performed numerically, indeed a FE based friendly
procedure is presented in the paper while the joints are focused
being the weak points of a steel elements system. The promoted
method, already experienced by the authors in different con-
texts [14], [15], [16], [17], [18], is here applied to welded beam-
to-column joints to predict their plastic collapse load. Perfect asso-
ciative plasticity is postulated and von Mises yield criterion in devi-
atoric plane is used throughout. Two different numerical techniques,
based on the static and the kinematic approach of limit analysis
respectively, are simultaneously applied to detect the plastic col-
lapse limit load of the analyzed joints. The procedure and the related
numerical findings are validated by comparison with experimental
outputs on real scale prototypes, [19], to show the robustness and
reliability of the numerical plastic limit state design when facing a
real engineering problem.

2. Limit analysis via a FE-based procedure

2.1. Theoretical bases

In the realm of perfect plasticity, limit analysis gives the theoret-
ical tools to determine the plastic collapse loads, i.e. the loads under
which the structure, modeled as elastic-perfectly plastic, reaches a
critical state in which large increases in plastic deformation become
possible with little, if any, increase in loads.

For simplicity, but without loss of analytical rigor and practical
effectiveness, in the following the loads are only the external surface
actions applied to the structure, body forces are assumed negligible
with respect to the formers. Moreover, as usual in this context, all the
acting loads are expressed in terms of assigned reference loads, say p̄,
multiplied by a single load multiplier, say P. To set the problem from
an analytical point of view, let us now denote with V the volume,
referred to a 3D Euclidean space, occupied by the analyzed struc-
ture whose external surface is S = St ∪ Su where St is the portion
where loads P p̄ act and Su the portion where boundary kinematic
conditions, say u = ū, are specified.

The cited theoretical tools are the well known theorems of limit
analysis, based on the principle of maximum plastic dissipation valid
only for standard materials as the one here assumed, and furnishing
a lower bound, PLB, and an upper bound, PUB, to the plastic col-
lapse load multiplier, say PU. Borrowing from a classic textbook on
plasticity, [20], the two theorems may be stated as follows:

Static or Lower bound theorem: the loads that are in equilibrium
with a stress field that nowhere violates the yield criterion do not
exceed the collapse loads. That is, if at every point within V exists
a stress field s̃j with f (s̃j) ≤ 0, with j ranging over the components
of the stress vector in principal stress space and f(s j) denotes the
yield function in the same space, and also the stress field s̃j is in
equilibrium with the applied loads PLB p̄, then PLB is a lower bound
to the plastic collapse load multiplier PU, i.e. PLB ≤ PU.
Kinematic or Upper bound theorem: the loads that do positive work
on a kinematically admissible velocity field at a rate equal to the
total plastic dissipation are at least equal to the collapse loads.
That is, if the acting loads are PUB p̄; u̇c is a kinematically admis-
sible velocity field whose related compatible strain rates, say ėc

j ,
have the direction of the outward normal to the yield surface
f(s j) = 0 at sj = sY

j , which means that ėc
j = k̇ (∂ f/∂sj) with

k̇ > 0 being a scalar multiplier; sY
j denotes the stresses at yield

associated to ėc
j , then PUB given by

PUB =

∫
Vs

Y
j ėc

j dV∫
St

p̄i u̇c
i dSt

(1)

is an upper bound to the plastic collapse load multiplier PU, i.e.
PUB ≥ PU.

It is well known that for standard materials the maximum value
of PLB and the minimum value of PUB produced by the application of
the two theorems are equal to each other and they also equal the col-
lapse load multiplier PU. The static and the kinematic approaches of
limit analysis pursued to detect PU are essentially techniques to max-
imize PLB and to minimize PUB, respectively. The above theorems, as
well as the limit analysis approaches they generate, are well known
and have been here recalled only for a better understanding of the
numerical procedures applied throughout the present analysis both
illustrated in the next section with the aid of a geometric, more
intuitive, interpretation.

2.2. The FE-based limit analysis

The promoted FE-based procedure arises from the application of
two different methods, namely the Elastic Compensation Method
(ECM) and the Linear Matching Method (LMM), see e.g. [18], and
references therein.

The ECM is aimed at determining the maximum value of loads,
say PLB p̄, in equilibrium with a plastically admissible stress field,
at which the structure finds itself at a state of incipient collapse. It
then operates in the spirit of the static approach. The key-concept of
the ECM is to mimic the stress redistribution arising within a struc-
ture approaching its critical (collapse) state when subjected to loads
increasing up to collapse. Indeed the greater are the acting loads the
wider are the structure portions where the elastic (plastically admis-
sible) stresses attain an admissible threshold given by the assumed
yield condition. When such redistribution cannot take place anymore
the structure enters its post-elastic (plastic in this context) phase and
plastic collapse is readily manifested. Precisely, the load increase is
achieved by the ECM performing many sequences of elastic FE anal-
yses. At the end of each sequence the applied loads, say P(s) p̄, with
P(s) = load multiplier of the current sequence (s), is increased of
a fixed increment. On the other hand, the stress redistribution is
achieved by the ECM performing, for the current fixed loads P(s) p̄ of
the sequence, a number of FE analyses on the discretized structure
in which a reduction of the elastic modulus is applied to the portions
where the stress has attained the yield threshold.

The redistribution of the stresses associated to P(s) p̄ is pursued
iteratively and can be easily understood with reference to the sketch
of Fig. 1 where the assumed von Mises yield surface in the deviatoric
p−plane is given by a circle of equation q2 − q2

y = 0, with q :=
√

2J2

(being J2 the second deviatoric stress invariant) and qy :=
√

2
3sy

(being sy the uniaxial yield stress) is the circle’s radius.
The sketch of Fig. 1 depicts the scalar value stresses computed

at the (k − 1)th iteration (or, equivalently, at the (k − 1)th FE anal-
ysis within the current sequence) at each element in the FE mesh.
Such value, say q

(k−1)
#e for the generic element #e, is the average of

the stress values computed at each Gauss point within the element.
Among all the q

(k−1)
#e (with #e = 1, 2, ... total number of elements),

the “maximum stress” in the whole mesh, named q
(k−1)
max in Fig. 1, is

detected. Such a stress point is, in practice, the stress point “farthest
away” from the von Mises circle. If such maximum value is greater
than qy, as hypothesized in the sketch, the method tries to redis-
tribute the current loads P(s) p̄ performing a new (kth) FE analysis
of the discretized structure where within the elements with a q

(k−1)
#e

greater than qy (like, for example, in elements #1, #2, #e, #n, in Fig. 1)
the elastic modulus is reduced, to bring the not admissible stress onto
the yield surface, according to the formula:

E(k)
#e = E(k−1)

#e

[
qy

q
(k−1)
# e

]2

. (2)
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