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A B S T R A C T

Structural stainless steel requires appropriate recognition of its beneficial properties such as material non-
linearity and significant strain hardening. The Continuous Strength Method (CSM) exploits those benefits
through a strain based approach for both stocky and slender cross-sections. In this paper, a new design method is
proposed that combines the CSM design principles with Perry type buckling curves for stainless steel square and
rectangular hollow sections (SHS and RHS) subjected to compression. Numerical models were developed to
investigate effects of various parameters on column strength and to develop complete column curves for hollow
members. It was observed that cross-section slenderness λp and material properties such as non-dimensional
proof stress e and strain hardening exponent n significantly influence column resistances. Effects of e and n were
appropriately incorporated through introduction of correction factors to modify non-dimensional member
slenderness. It was observed that the shapes of column curves were mostly affected by λp, and hence im-
perfection parameter η, as used in Perry formulations, was expressed as a function of λp; this technique yielded
separate column curves for different λp values. The proposed method includes the strain hardening benefits for
stocky sections, and abolished the necessity of calculating effective cross-sectional properties for slender sec-
tions. Performance of the proposed technique is compared against those obtained by using the European
guidelines.

1. Introduction

The structural response of stainless steel is considerably different
from ordinary carbon steel as its stress-strain response has character-
istic nonlinearity with significant stain hardening, which also varies
significantly between grades. Despite the absence of any yield point,
current design codes [1–3] treat stainless steel as an elastic, perfectly-
plastic material like carbon steel, and the effective width approach with
cross-section classification is mostly adopted to account for local
buckling. Without appropriate incorporation of its material non-
linearity as well as strain hardening benefits, an efficient design tech-
nique for stainless steel design cannot be achieved. The Continuous
Strength Method (CSM) [4–9] was developed to exploit these unique
properties through a strain based design method that can appropriately
include element interactions in predicting cross-sectional resistances.
Primary components of CSM are a base curve which relates the de-
formation capacity of the section to cross-section slenderness, and a
material model that explicitly recognises strain hardening. With the
recent development of CSM [8,9], cross-section resistances for both
stocky and slender sections can be predicted using simple formulations.

With its demonstrated accuracy at the cross-section level, the current
paper extends this design concept in predicting the buckling capacity of
stainless steel columns.

Two fundamentally different approaches i.e. tangent stiffness
method and Perry formulations are typically used for obtaining the
buckling resistance of stainless steel columns. The tangent stiffness
method [2,3] involves simple equations and takes account of material
nonlinearity, but the process is iterative and does not consider the in-
evitable imperfections of the member. Perry curves that are currently
adopted in Eurocode [1], use a direct method involving separate curves
for different cross-section types, and explicitly address the imperfection
of members but do not include material nonlinearity. Rasmussen and
Rondal [10] showed that material nonlinearity and non-dimensional
proof stress significantly influence column strength, and a single
column curve cannot be used to accurately predict the column strength
of different grades of stainless steel. Hradil et al. [11] suggested tech-
niques to include material nonlinearity in Perry curves by defining
transformed slenderness but the procedure was iterative as they used
tangent modulus. Shu et al. [12] recently proposed two base curves and
a number of transfer equations which could be used to develop multiple
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curves to cover all grades of stainless steel but the suggested formula-
tions are too complicated to be used in practice. Importantly, all of the
aforementioned techniques use effective area for slender cross-sections.
Huang and Young [13] suggested obtaining material properties mea-
sured by using stub column tests instead of coupons so that gross cross
sectional area could be used to predict the column capacity; this ap-
proach should produce better predictions but stub column results are
not always available to be readily used for design purposes.

The objective of this study was to develop a simple design method to
calculate the buckling resistance of stainless steel hollow sections i.e.
square hollow section (SHS) and rectangular hollow section (RHS) that
can appropriately reflect the characteristics of stainless steel. Nonlinear
Finite Element (FE) models were developed and verified using available
test results as part of the current study. A comprehensive parametric
study was carried out to identify the parameters that affect buckling
resistance. Generated numerical results were used to develop Perry type
column curves based on CSM design principles so that material non-
linearity and strain hardening properties could be incorporated without
changing the basic forms of the currently used equations. Multiple
curves were proposed that integrate all influential parameters to cover
a wide range of stainless steel grades, and finally, the accuracy of the
proposed method was verified.

2. Current design methods for predicting buckling resistance

Tangent stiffness method and Perry-Robertson formulations are
widely used to determine the buckling resistance of steel columns.
Similar to carbon steel, Eurocode (EC3) [1] adopted the Perry type
equations for stainless steel columns. Buckling equations currently used
in EC3 are presented in Eqs. (1)–(5), where Ag is the gross cross-sec-
tional area, fy is the 0.2% proof stress (σ0.2), χ is the buckling reduction
factor, Aeff is the effective cross-sectional area, λ is the non-dimensional
slenderness of the column and Ncr is the elastic buckling load of the
column based on gross area. A number of column curves were proposed
for different cross-section and loading types such as major and minor
axis buckling of closed and open sections. Suggested imperfection
parameter η is expressed using a linear relationship, η= α(λ − λ0)
where α and λ0 factors vary depending on cross-section types. Stainless
steel is a highly nonlinear material and its nonlinearity significantly
varies from grade to grade, which is not recognised in current EC3
guidelines for column resistance. American and Australian codes [2,3],
on the other hand, follows tangential stiffness approach which is based
on the Euler formula. This method involves a simple equation but the
process is iterative as it uses the instantaneous tangent modulus (Et),
which considers material nonlinearity but member imperfection is not
considered in the whole process. To overcome the shortcomings of the
codes, Rasmussen and Rondal [10], Hradil et al. [11] and Shu et al.

[12] tried to incorporate material nonlinearity in the column curves,
which are discussed below.
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Rasmussen and Rondal [10] numerically investigated the buckling
behaviour of nonlinear metallic columns, and showed that proof stress
and material nonlinearity have significant effects on column curves.
Considering these effects, Rasmussen and Rondal [10] modified the
imperfection parameter η into a nonlinear function as shown in Eq. (6),
and parameters α, β, λ1 and λ0 were expressed as functions of non-
dimensional proof stress e (=σ0.2/E) and strain hardening exponent n.
This modification allowed incorporating the material parameters as
well as geometric imperfections in column curves. The performance of
their proposed formula was very good but too complex to be used in
design practice. Australian code [3] adopted this method as an alter-
native approach by proposing values of α, β, λ1 and λ0 for some se-
lective grades of stainless steel.
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Hradil et al. [11] observed that traditional tangent stiffness method
and Perry formulations do not appropriately consider geometric im-
perfections and material nonlinearity. They suggested to incorporate
material nonlinearity in Perry formulas by modifying the non-dimen-
sional slenderness λ; a new parameter called transformed slenderness
(λ⁎) was proposed as shown in Eq. (7) where n is the material strain
hardening exponent, E0 is the initial Young's Modulus and χ is the
buckling reduction factor as given in Eq. (5). They recalibrated the
imperfection factors α and λ0 given in EC3 for different sets of material
properties. But this method requires iteration as the transformed slen-
derness and the reduction factor depend on each other.
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Shu et al. [12] observed the effect of non-dimensional proof stress e
and strain hardening exponent n on flexural buckling capacity of

Notations

A, B, W coefficients of sigmoidal function
Aeff effective cross-section area
Ag gross cross section area
Ce correction factor for e
Cn correction factor for n
E initial young's modulus
Esh slope of the linear hardening section of the bi-linear ma-

terial model
L effective length of a column
Ncr elastic buckling load of the column based on gross cross-

section area
Nu ultimate capacity of a column
e non-dimensional proof stress
fy, σ0.2 material yield stress

fcsm, σLB buckling stress
n material strain hardening exponent
α, λ0, β, λ1 imperfection factors
εcsm deformation capacity of a cross-section
εe,ev equivalent elastic strain at ultimate load
εu material total strain at ultimate strength
εy material elastic strain at yield stress
η imperfection parameter
λ member slenderness based of yield stress
λ⁎ transformed member slenderness
λcsm member slenderness based on buckling stress
λm modified member slenderness
λp cross-section slenderness
σcr.cs elastic buckling stress of full cross-section
χ buckling reduction factor
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