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The paper presents a new computer method for nonlinear inelastic analysis of steel frames consisting with
members with non-uniform cross-sections. A novel second-order flexibility-based element has been devel-
oped. The behaviour model accounts for material inelasticity due to combined bending and axial force, el-
ement geometrical nonlinear effects in conjunction with initial geometric imperfections using only one
element per structural member. The proposed element formulation combines the power series approach
to obtain the general solution of the second-order bending moments with the Maxwell-Mohr method to
compute the force-displacement relationship of the general continuously non-prismatic Timoshenko-
Euler beam-column element. The method ensures also that the plastic strength interaction requirements
are always satisfied in the plastic hinges developed at the ends of the member or within the member length.
The second-order elasto-plastic tangent stiffness matrix and equivalent nodal loads vector of non-uniform
2D steel members with semi-rigid connections is developed and the proposed nonlinear analysis formula-
tion has been implemented in a computer program. In order to verify the efficiency and accuracy of the pro-
posed approach, several benchmark problems have been studied and the results prove the performance of
the proposed method.
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1. Introduction

Non-prismatic members are commonly used in the steel con-
struction industry because of their structural efficiency. During the
last decades several analytical and numerical methods have been de-
veloped for evaluation of the nonlinear analysis and stability of uni-
formly tapered beam–column elements and systems [1–32]. All
these methods can be classified in three main categories as follows:
(1) standard engineering or simple models, based on suitable
adaptation of Euler-Bernoulli or Timoshenko beam theories, non-
prismatic members being treated as elements of variable cross-
section ignoring in thisway the tapering effects [1–26]; (2) enhanced
models [27–32] able to consider explicitly the equilibrium on the
beam lateral surface with an accurate description of the shear stress-
es at the top and bottom fibres of the beam and (3) advanced two-
and three-dimensional finite element models enhanced with ad-
vanced nonlinear constitutive laws [33].

Although FEM based software became very popular and can re-
flect with a high degree of precision the real behaviour of

structures, they are limited in the analysis and design of complex
structures, usually such approaches requires very fine-grained
modelling, and extensive calibration and mesh generation studies
leading to complications in the interpretation of results and implies
a high computational effort. Hence, researchers have been con-
cerned in developing new advanced analysis methods for facilitat-
ing the evaluation of response of structures in practice by using
line element approaches.

Despite of recognizing the limitations of the simple models in con-
sidering some sensitive aspects in the modelling of such particular ele-
ments, mainly due to overlooking of the equilibrium on the beam
lateral surface (i.e. tapering effect), the simplemodels are still attractive
for practical applications and still represents the focus of intense re-
search efforts [18–26].

For instance for global buckling of tapered frame elements and
their effective length factor, analytical solutions based on particular
solutions of differential equilibrium equation of Euler-Bernoulli uni-
form tapered beam-column have been proposed (e.g., [2–4]). These
methods solve either the second or fourth order degree of the differ-
ential equation considering the displacement as the main unknown
and taking into account different particular shapes of variation of
cross-section along the member length. More general solutions
based on power series or Chebyshev polynomial approaches to ob-
tain elemental stiffness matrix for tapered beams have been
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developed in (e.g., [5–7]). Lateral-torsional buckling analyses of ta-
pered members and systems have been proposed also in several pa-
pers (e.g., [8–10]) among others. Moreover, the analytical and finite
element formulation can be cast within the framework of displace-
ment based models (e.g., [11–17]) and flexibility-based model
(e.g., [18]). A useful brief review about this issue has been given in
[18]. It is worth noting that just a few papers have been paid atten-
tion to coupling effects of constant axial force (nonlinear geometrical
effects) and shear deformation according to Timoshenko's theory on
nonlinear behaviour of tapered beam-column elements (e.g., [7]) or
to tapered elements with flexible connections as would occur in
semirigid frames (e.g., [4,18]).

Tapered beam-column elements studied bymany researchers usual-
ly is an idealized model. In reality, regardless of the quality of the
manufacturing process, steel profiles develop imperfections which
could affect the stability of the structure, may cause premature collapse
and in general change the nonlinear behaviour both at the element and
global level. In order to obtain a structural response closer to the reality,
the effect of initial geometrical imperfections on the behaviour of ta-
pered beams and columns has been studied by several researchers
(e.g., [2,19]).

Concerning the effects of material nonlinearity several approaches
have been developed. Leu et al. [16] proposed a quasi-plastic hinge ap-
proach for beam elements with uniform and nonuniform cross-sections
through the use of different moment-curvature relations but the ele-
ment second–order and shear deformation effects are ignored in their
analysis. Li et al. [17] proposed a concentrated plasticity model for
second-order inelastic analysis of steel frames of tapered members but
plastic hinges are allowed to be developed only at the ends of the
beam-column element.

Although several advanced models for the nonlinear analysis of ta-
pered steel frames have been developed, some of them mentioned
above, several important features, for practical applications, such as
the combined effects of element geometrical nonlinearity, initial geo-
metric imperfections, lateral loads applied onmember length, shear de-
formation, semi-rigid behaviour of the connections and the ability to
capture plastic hinge development within the element length by using
only one line element per structuralmember are not completely and ef-
ficiently developed in the computational methods addressed in the
literature.

Within the framework of the standard engineering models, men-
tioned above, the present work attempts to develop accurate yet com-
putational efficient tools for the nonlinear inelastic analysis of steel
frames with tapered members and semi-rigid connections. Essentially,
the nonlinear inelastic analysis employed herein takes the advantage
of using only one beam-column element per structural member simul-
taneously considering the effects of second-order geometrical nonline-
arities, shear deformation and initial geometric imperfections
featuring in this way the ability to be used for practical applications by
combining modelling and computational efficiency in conjunction
with a reasonable accuracy. Distributed lateral loads acting along the
member length can be directly handled into the model without the
need to generate additional elements along the member length such
that the same topological model could be used both in the linear and
the nonlinear analyses. The method ensures also that the plastic
strength requirements are always satisfied in the plastic hinges devel-
opedwithin themember lengthwithout the need to divide themember
into two elements and applying the plastic flow rules at the element
ends as in [34] or to make additional operations of static condensation
as in [35]. By contrast with the aforementioned approaches, the present
element formulation combines the power series approach with the
Maxwell-Mohrmethod to compute the force-displacement relationship
at the element level highlighting in this way the flexibility matrix and
equivalent nodal loads of the tapered element. The second order differ-
ential equilibrium equation is expressed at the element level represent-
ed in the natural coordinates, with the rigid body modes removed, and

considering as a primary unknown the bendingmoment the equation is
successfully solved by applying the power series approach. The pro-
posed governing equation and the resulted element stiffness matrix
and equivalent nodal load vector are of general forms, they can be ap-
plied to any variation of sectional shape alongmember length subjected
to uniform axial compressive or tensile forces. Such a formulation allow
us to take into account in amore efficientmanner the initial geometrical
imperfections and member lateral loads, the effects of shear deforma-
tion are integrated directly in force-displacement relationships by
means of applying the Maxwell-Mohr rule to compute the generalized
displacement in the second-order geometrically nonlinear analysis. In
this respect the element force fields are described by the second-order
bending moments and shear forces derived by solving the second-
order differential equation with variable coefficients in the presence of
the axial force, member lateral loads and the second-order effects asso-
ciatedwith the initial geometric imperfections. In thisway the elements
of the stiffness matrix and equivalent nodal loads can be obtained ana-
lytically and readily evaluated by computing the correction coefficients
that affect the first-order elastic flexibility coefficients and equivalent
nodal loads of prismatic beam-column element. The effect of the trans-
verse shear deformation can be readily included in the element for-
mulation, both in stiffness matrix and equivalent nodal loads. A
plastic hinge method is adopted to simulate member plasticity; plas-
tic hinges are assumed to be lumped either at the ends of the beam-
column element or along the element length. In the present paper
the concentrated plasticity model proposed in [36] for the derivation
of force-displacement relation is extended for curved convex yield
surfaces and for non-prismatic elements in conjunction with consid-
eration of second order effects, lateral loads and initial geometric im-
perfections in the bending moment expression. The effect of semi-
rigid connections could be included in the second-order plastic
hinge analysis using the zero length rotational spring element ap-
proach. The efficiency, accuracy and robustness of the analytic proce-
dure and the computer program developed here has been evaluated
using several benchmark problems analysed previously by other re-
searchers using independent analytical, numerical and finite ele-
ment solutions.

2. Formulation of the proposed analysis method

The present formulation is based on the following assumptions:
(1) plane section remain plane after flexural deformation; (2) local
and torsional buckling do not occur; lateral torsional buckling is
prevented; warping and cross-section distortion are not considered
and shear distortion is neglected; (3) transverse shear deformations
associated to the transverse shear forces are neglected in the plastic
constitutive relationships; (4) the element is considered to be con-
tinuously non-prismatic with doubly symmetric cross-section;
(5) small strain but arbitrarily large displacements and rotations
are considered.

As a consequence of the assumption (4) the locus of cross-section
centroids coincide with the beam axis avoiding in this way the strong
coupling between the bendingmoment, shear and axial forces allowing
in this way to treat the continuously non-prismatic straight beams as
beams of variable cross-section with straight line element axis. For
those beams with non-continuously variable cross-sections along the
member length the beams are divided in a series of continuously non-
prismatic elements and treat those segments as continuously non-
prismatic straight elements. Nonlinear response of tapered frame struc-
tures is mainly dominated by the bending moments and axial loads
while shear deformations are relatively small under certain conditions
[19,20]. However in the present study the effect of transverse shear de-
formations over element stiffness are modelled by means of Timoshen-
ko model and some theoretical considerations to evaluate the tapering
effect [27]when shear deformations are taken into account are present-
ed. Preventions of induced warping by torsion, cross-section distortion
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