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This paper presents a design proposal for the out-of-plane buckling resistance of prismatic beam-columns subject
to axial compression and uniaxialmajor-axis bending thatwas developedbased on thewell-knownAyrton-Perry
format. Firstly, the relevant theoretical background is summarized, closely following the theoretical derivation
performed by Szalai and Papp (2010). Secondly, the required transformations for the engineering application
of the design procedure are detailed and extended to arbitrary bending moment distributions. Appropriate gen-
eralized initial imperfection factors for the out-of-plane buckling of beam-columns are defined so as to achieving
complete consistency across the stability verifications for columns, beams and beam-columns. The proposed pro-
cedure is subsequently validated against a large set of advanced numerical simulations. A good agreement was
found between the numerical results and the estimates provided by the proposed design procedure, both in
terms of the overall trend and the specific quantitative results. Based on a statistical assessment, the comparison
with the interaction expression of Eurocode 3 (2005) (method 2) showed that this proposal slightly outperforms
the Eurocode procedure, both in terms of average values and dispersion of results.
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1. Introduction

Steel skeletal structures are often designedwith individualmembers
subject tomajor-axis bending and axial force (see Fig. 1). The behaviour
of such members results from the combination of both action effects
and varies with slenderness. At low slenderness, the load-carrying ca-
pacity is governed by cross sectional resistance. With increasing slen-
derness, the geometrically non-linear effects can no longer be ignored,
and out-of-plane (flexural or flexural-torsional) buckling may trigger
failure. For intermediate slenderness, instability usually occurs in the in-
elastic range of thematerial. In the high slenderness range, instability is
essentially an elastic phenomenon.

The interactions between instability and plasticity in beam-columns
lead to a very complex 3D behaviour that is not easily amenable to de-
sign procedures with a consistent and transparentmechanical basis. In-
deed, the resistance of beam-columns is generally checked with
interaction formulae that combine the ultimate strengths of the
member either as a concentrically loaded column or as a beam
under uniaxial bending. Interaction formulae are typically developed
either: (i) as modifications to formulae derived from an elastic anal-
ysis, with more or less empirical factors whose complexity depends
on the desired accuracy and range of validity, or (ii) on a wholly

empirical basis [4]. Table 1 shows two representative examples of
codified interaction formulae for beam-columns subject to axial
compression and major axis bending.

AISC [5] provides an interaction approach for the stability verifica-
tion of beam-columns with doubly or singly symmetric cross-sections
as given in Table 1. The interaction equations represent a lower bound
of the resistance [6]. The verification encompasses the beam and col-
umn verifications as extreme cases and thus accounting for the limit
states of yielding, flexural and/or torsional buckling, flange local buck-
ling, and web local buckling. However, the approach has been reported
to be over-conservative for members loaded with major axis bending
moment and compression, which are prone to out-of-plane failure [4,
6]. Section H1.3 from AISC [5] gives an alternative equation for the ver-
ification of doubly symmetric rolled compact members subject to single
axis bending and compression (AISC Commentary [6]).

Focusing on the Eurocode 3 [2] implementation, the interaction fac-
tors are established on the basis of the concept of equivalent moment
and the amplification of the bending effects as a function of the normal-
ized level of applied axial force, including extensive calibration for prop-
er account of the plasticity effects [7]. However, from the point of view
of mechanical consistency and transparency, the resulting interaction
formulae are hardly satisfactory, since:

▪ as a two-step procedure that depends on the buckling resistances of
the member in bending only and in compression only, they require
successive statistical calibrations: first, an independent calibration
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of the imperfection factors for columns and beams and then a cali-
bration of the interaction factors; and

▪ for class 1 and class 2 cross-sections (plastic interaction), the pro-
posed expressions for the interaction factors (both for method 1
and for method 2) have no physical meaning.

From a practical point of view, the downside to the wide range of
cases covered by the EC3-1-1 [2] interaction expressions resulted in
long procedures for the determination of the interaction factors,
which are especially burdensome when used for preliminary sizing of
the members.

The EC3-1-1 [2] design rules for columns andbeams are based on the
buckling curve approach. For columns, the design procedure is
established on the solution of the differential equation of a pin-ended
compressedmember with an initial sinusoidal imperfection for the lim-
iting condition of first yield at the critical cross-section (mid-span), cast

Fig. 1. Steel members subjected to bending and axial force [3].

NOTATIONS

Latin upper case letters
A cross-sectional area
C1 factor accounting for non-uniform bending moment

distributions in the elastic critical moment
Cb lateral-torsional buckling modification factor
Cbc factor accounting for non-uniform bending moment

distributions in the elastic critical moment including
compression effect;

E modulus of elasticity
G shear modulus
It St. Venant torsional constant
Iy moment of inertia y-axis
Iw warping constant
Iz moment of inertia z-axis
L length
Mcr elastic critical bending moment
Mcr,N elastic critical bendinηg moment including the effect of

compression force
Mcr,nu elastic critical bending moment for non-uniform bend-

ing moment distribution
Mcr,N,nu elastic critical bending moment including the effect of

compression force for non-uniform bending moment
distribution

Mcx factored lateral-torsional buckling strength
Mr. maximum bending moment design value
My,Ed maximum bending moment design value
My,Rd. major axis bending moment resistance
My major axis bending moment
N compressive force
Ncr,x elastic critical force associated with pure torsional

buckling
Ncr,z elastic critical force associated with pure flexural buck-

ling about minor axis
NEd maximum axial design values acting on the member
Nb,Rd. factored buckling strength
Pco factored buckling strength
Pr maximum axial design values acting on the member
Wy elastic section modulus relative to y-axis
Ww warping modulus
Wz elastic section modulus relative to z-axis

Latin lower case letters
e0 equivalent initial geometrical imperfection
kyy interaction factor
kzy interaction factor
fy yield stress
r0 polar radius of gyration
v(x) transverse displacement along y axis
v0 (x) initial transverse displacement
v̂0 amplitude of initial imperfection
v̂ amplitude of transverse displacement along y axis
w(x) transverse displacement along z axis
w0 (x) initial transverse displacement

Greek lower case letters
βN compression factor
ηBC generalized initial imperfection factor for flexural-tor-

sional buckling of beam-columns
ηLT generalized initial imperfection factor for lateral-tor-

sional buckling
ηz generalized initial imperfection factor for minor axis

flexural buckling

θ(x) twist rotation
θ̂ amplitude of twist rotation
θ0(x) initial twist rotation
θ̂0 amplitude of initial twist rotation
λBC normalized slenderness for beam-columns
λLT normalized slenderness for lateral-torsional buckling
λz normalized slenderness for minor axis flexural buckling
φ over strength factor
χBC reduction factor for flexural-torsional buckling of beam-

columns
χLT lateral-torsional buckling reduction factor
χy major axis buckling reduction factor
χz minor axis buckling reduction factor
ψ end moment ratio

Table 1
Interaction formulae from representative design codes.
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Pr, NEd - the maximum axial design values acting on the member.
Mr, My,Ed - the maximum bending moment design values acting on the member.
Pc, Pcy - factored buckling strengths in compression.
NRd – compression resistance.
Mcx - factored lateral-torsional buckling strength.
My,Rd. – major-axis bending moment resistance.
χy, χz – flexural buckling reduction factors for major and minor axis.
χLT – lateral-torsional buckling reduction factor.
kyy kzy are interaction factors.
Cb – lateral-torsional buckling modification factor.
⁎Alternative verification for doubly symmetric rolled compact members subject to single
axis flexure and compression.
⁎⁎The terms required only to account for the shift of the centroidal axis in class 4 cross-sec-
tions have been omitted.
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