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a b s t r a c t

We study free and harmonically forced vibrations of an Euler-Bernoulli beam with rate-

independent hysteretic dissipation. The dissipation follows a model proposed elsewhere for

materials with randomly dispersed frictional microcracks. The virtual work of distributed dis-

sipative moments is approximated using Gaussian quadrature, yielding a few discrete inter-

nal hysteretic states. Lagrange’s equations are obtained for the modal coordinates. Differential

equations for the modal coordinates and internal states are integrated together. Free vibra-

tions decay exponentially when a single mode dominates. With multiple modes active, higher

modes initially decay rapidly while lower modes decay relatively slowly. Subsequently, lower

modes show their own characteristic modal damping, while small amplitude higher modes

show more erratic decay. Large dissipation, for the adopted model, leads mathematically to

fast and damped oscillations in the limit, unlike viscously overdamped systems. Next, har-

monically forced, lightly damped responses of the beam are studied using both a slow fre-

quency sweep and a shooting-method based search for periodic solutions along with numer-

ical continuation. Shooting method and frequency sweep results match for large ranges of

frequency. The shooting method struggles near resonances, where internal states collapse

into lower dimensional behavior and Newton-Raphson iterations fail. Near the primary reso-

nances, simple numerically-aided harmonic balance gives excellent results. Insights are also

obtained into the harmonic content of secondary resonances.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Vibrational energy dissipation in many materials is approximately rate independent and hysteretic; for some classical ref-

erences, see Refs. [1–3]. In particular, even though amplitudes of free vibrations might decay exponentially, thereby suggesting

linear damping models, the actual damping may well be hysteretic and nonlinear. Several models of scalar hysteresis [4–9] have

been proposed in the literature. These are useful for lumped parameter or low dimensional systems. Generally speaking, models

based directly on underlying dissipative mechanics tend to be complicated, while simpler and lower-dimensional models tend
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to be empirical.

In this paper we study the dynamic response of beams whose internal dissipation can be modeled as the net averaged effect

of a large number of randomly dispersed frictional microcracks [9]. The relevant scalar hysteresis model has been proposed

recently elsewhere [9], and our application to a vibrating beam as presented here offers useful physical insights into the behavior

of the beam for both free and harmonically forced vibrations, as well as a clear presentation of some procedural aspects involving

computation of virtual work via a domain integral that is approximated using a modest number of Gauss points; we have not

noted a discussion of this approach in the literature.

In the rest of this section, we begin with a brief review of the relevant literature on modeling of hysteretic dissipation, and

then present the main motivation for our paper.

Several authors have incorporated overall hysteretic dissipation without explicitly modeling the rate-independent hysteresis

at any stage. In 1974, Lund [10] used a hysteretic loss factor, based on the phase difference between stress and strain due to

hysteresis, for the analysis of a flexible rotor supported by fluid-film bearings. In 1977, Nelson and Zorzi [11] applied a similar

loss factor in the finite element formulation of an internally damped rotor bearing system. In 1990, Lee et al. [12] used a complex

Young’s modulus to incorporate the hysteretic energy loss in a non-uniform Euler-Bernoulli cantilever beam. The same concept

was used by Chang [13] and Gounaris et al. [14] for the vibration analysis of structures. Later on, Labonnote et al. [15] used

complex values for both elastic and shear moduli for Timoshenko timber beams.

Some papers have explicitly incorporated approximate models for hysteretic stress strain relations. For example, Baker et al.

[16] implemented a hysteretic stress strain model proposed by Pisarenko [17] to study the free vibration of a cantilever beam.

In this approach, increasing and decreasing portions of the stress strain curve are separately and explicitly described using

quadratic approximations designed to match desired per-cycle dissipation rates. This method is effectively restricted to simple

load cycles without small reversals within load paths (we will discuss this issue further in the context of our own model below).

Inman [18] studied a viscoelastic beam incorporating hysteretic stress strain behavior using a linearized convolution operator

attributed to Christensen [19]. These approaches provide examples of approximating the within-cycle hysteretic behavior to

make semi-analytical or numerical progress easier.

Some other papers present direct implementations of scalar hysteresis models. For instance, Papakonstantinou et al. [20] and

Gkimousis and Koumousis [21] used the Bouc-Wen model [5,6] to explicitly incorporate hysteretic dissipation in their struc-

tural responses. In this approach, governing equations for the visible external displacement variables and the hidden internal

hysteretic variables are to be numerically solved together in forward simulation. Similar explicit solution of additional evolu-

tion equations governing hysteretic quantities may be found in Refs. [22–24]. Such explicit numerical solution of hysteresis

equations is common to our own approach below, although our hysteresis model has a different physical motivation.

Some authors have modified or extended the Bouc-Wen model to enable better matches with data, or better shape control

(e.g., pinching or degradation): see, e.g., [25–27].

Among alternatives to the Bouc-Wen model, we note Segalman’s [28] four parameter hysteresis model based on the earlier

model of Iwan [4], with the aim of simulating the dissipative behavior of joints. In a loosely related approach, Quinn and Segal-

man [29] developed a model using Jenkins elements in series to describe the microslip induced dissipation of a mechanical joint.

Song et al. [30] used an adjusted Iwan model to depict the damping in a beam structure with bolted joints, with neural networks

to fit the Iwan model parameters.

The foregoing review of hysteresis models and their use is indicative, but not complete. A few more noteworthy papers which

differ slightly in their aims are now mentioned. Dahl [31] developed an early hysteresis model to simulate solid friction which

shares some features with the Bouc-Wen model but has not become as popular. Another model by Valanis [32] was used by Gaul

and Lenz [33] to develop a lumped parameter model for nonlinear substructures used in finite element analysis of lightweight

space structures. Sivaselvan and Reinhorn [34] attempted a unifying discussion of hysteresis models with strength and stiffness

degradation. In even more detailed modeling of concrete structures at a global level, with loading and unloading, yielding and

degradation, and other complicated phenomena, Miramontes et al. [35] proposed a piecewise-linear moment-curvature model

with various rules for different parts of load cycles. The modeling approaches mentioned in this paragraph are significantly

more complicated than the hysteretic damping model we will adopt below; our relatively simpler modeling will yield some

interesting new insights.

Our adopted hysteresis model is from the work of Biswas et al. [9], who performed finite element analyses of a plate with

distributed frictional micro-cracks under biaxial far-field in-plane loading, and obtained a simple yet qualitatively realistic scalar

hysteresis model therefrom. In their study, the far-field tractions on the plate were derived from a spatially constant stress state

𝜎 multiplied by a function of time, q(t), with the result that the state of zero stress was achieved whenever q(t) passed through

zero. The spatially constant nature of the stress led to essentially a scalar model. The resulting hysteresis loops were pinched

at the origin as expected (see, e.g., [9] and also [36]). Based on the overall qualitative features of the finite element results, the

following scalar hysteresis model was proposed in Ref. [9]

�̇� = 𝜅

(|𝜒 | + ϵ)
{𝜃a + 𝛽 sgn(𝜒�̇�) − 𝜃}|�̇� |, f = 𝜃𝜒 (1)

where 𝜅 , 𝛽, 𝜃a and 𝜖 are some positive parameters (the original article’s 𝜃m and K are here 𝜃a and 𝜅 respectively to avoid some

confusion later); and where 𝜒 , 𝜃 and f are the input, internal variable and output variable respectively. The parameters 𝜅 , 𝛽 and

𝜃a in Eq. (1) control the size and the orientation of the hysteresis loop; and 𝜀 is a small regularization parameter used to relieve

the singularity at 𝜒 = 0. A typical response of the model (Eq. (1)) under a multi-frequency input is shown in Fig. 1. The presence

of minor loops shows that the model can approximately capture partial unloading effects, which are not captured by the usual
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