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a b s t r a c t

The transmission of acoustic waves along a two-dimensional waveguide which is coupled
through an opening in its wall to a rectangular cavity resonator is considered. The re-
sonator acts as a classical band-stop filter, significantly reducing acoustic transmission
across a range of frequencies. Assuming wave frequencies below the first waveguide cut-
off, the solution for the reflected and transmitted wave amplitudes is formulated exactly
within the framework of inviscid linear acoustics. The main aim of the paper is to develop
an approximation in closed form for reflected and transmitted amplitudes when the gap
in the thin wall separating the waveguide and the cavity resonator is assumed to be small.
This approximation is shown to accurately capture the effect of all cavities resonances, not
just the fundamental Helmholtz resonance. It is envisaged this formula (and more gen-
erally the mathematical approach adopted) could be used in the development of acoustic
metamaterial devices containing resonator arrays.

Crown Copyright & 2017 Published by Elsevier Ltd. All rights reserved.

1. Introduction

The Helmholtz resonator is a well-known acoustical device in which a volume of air inside a rigid vessel is made to
resonate by exciting acoustic oscillations at its mouth. The original formula for the fundamental resonant frequency ωh due
to Helmholtz was later generalised by Rayleigh [1] and can be expressed as

ω ≈
′ ( )
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where cs is the wave speed in the acoustic medium, S is the area of the mouth which is assumed to be attached to the
resonator body of volume V through a neck of length L. Here ′ = +L L l is an effective neck length which takes account of
added inertia effects and is dependent on the geometry of the neck (often determined semi-empirically and proportional to
S1/2). The formula above (also see Kinsler et al. [2], §10.8 or Chanaud [3]) is approximate, based on the long-wavelength
assumption: λ ≫ ( ′ )L S V, ,1/2 1/3 . It assumes the mass of air in the neck acts mechanically as an incompressible piston con-
necting the oscillatory pressure at the mouth to the compressible volume of trapped air in the vessel, which in turn acts as a
spring.

When a Helmholtz resonator is connected to the wall of a pipe along which acoustic waves are propagating the com-
bined effect can be to drastically alter the acoustic output from total to zero acoustic transmission. This effect is well known

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/jsvi

Journal of Sound and Vibration

http://dx.doi.org/10.1016/j.jsv.2017.07.014
0022-460X/Crown Copyright & 2017 Published by Elsevier Ltd. All rights reserved.

n Corresponding author.
E-mail addresses: richard.porter@bris.ac.uk (R. Porter), d.v.evans@bris.ac.uk (D.V. Evans).

Journal of Sound and Vibration 408 (2017) 138–153

www.sciencedirect.com/science/journal/0022460X
www.elsevier.com/locate/jsvi
http://dx.doi.org/10.1016/j.jsv.2017.07.014
http://dx.doi.org/10.1016/j.jsv.2017.07.014
http://dx.doi.org/10.1016/j.jsv.2017.07.014
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jsv.2017.07.014&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jsv.2017.07.014&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jsv.2017.07.014&domain=pdf
mailto:richard.porter@bris.ac.uk
mailto:d.v.evans@bris.ac.uk
http://dx.doi.org/10.1016/j.jsv.2017.07.014


and has been exploited, for example, by the automotive industry in engine exhaust systems to suppress noise or improve
engine performance. For example, Kinsler et al. [2], §10.11 and Chen et al. [4] derive the following formula for the coefficient
of transmitted power, | |T 2, for a wave of frequency ω propagating along a pipe of cross sectional area λ≪A attached to a
Helmholtz resonator:
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(This formula is also derived on a long wavelength assumption, ignoring the diffractive effect of the relatively small mouth
of the resonator.) It shows that there is a significant reduction in acoustic transmission over a broad range of frequencies
around ω ω= h where | | =T 0. On account of the analogy with mechanical systems used to develop (1.2), there also exists an
analogy with electronic circuitry where the effect of Helmholtz resonators can be reproduced with inductors and capacitors
to form a band-stop filter (e.g. Montgomery et al. [5]).

Helmholtz resonators are used in many applications beyond those already mentioned above, for example in quantum,
microwave and optical waveguides (e.g. Shao et al. [6], Xu et al. [7] and Scharstein [8]). In the theory of water waves, flat-
bottomed harbours with small entrances form Helmholtz resonators. This gives rise to the so-called “harbour paradox” – see
Mei [9] who considered a rectangular harbour connected to a semi-infinite ocean through a small gap in a thin wall – in
which the smaller the entrance to the harbour the stronger the resonant effect within it.

More recently, Helmholtz resonators have been used extensively in the development of so-called metamaterials and
metasurfaces. Thus arrays of sub-wavelength cavities can produce surprising effects upon the macroscopic wave field that
are not manifested in naturally-occurring materials. For examples, see Richoux and Pagneaux [10], Fang et al. [11], Wang
et al. [12], Seo et al. [13] and Faure et al. [14].

The formulae produced in (1.1) and (1.2) above are approximate and are presumably sufficiently accurate for many
applications. However, as highlighted by Chanaud [3], they are only appropriate under a long-wavelength assumption and
neglect the effects of higher resonant frequencies. The work in this paper – set in the context of two-dimensional acoustics –
is aimed at producing an accurate prediction of the transmitted acoustic wave energy in closed form based upon the
solutions of the exact equations of linearised acoustics and without making a long-wavelength assumption from the outset.
The need to such resolve higher resonant frequencies and accurately encode their effects in scattering coefficients has
recently been highlighted in an sound absorption applications of Romero-García et al. [15] and Jiménez et al. [16].

In the particular problem considered here an incident acoustic wave propagates along a uniformwaveguide and interacts
with a rectangular cavity through an opening in the waveguide wall. The wall between the waveguide and the cavity is
assumed thin so there is no length L assigned to the neck of the resonator. In Section 2 the solution to the problem posed is
formulated in terms of integral equations. Solutions are expressed in terms of a series of prescribed functions as a practical
means of determining numerical solutions to the integral equations. This forms the basis of the approximate solution for a
small gap which is described in Section 3 and relies on some complicated technical details contained in Appendices A and B.
The approach here has some similarities with recent work of the authors (see Evans & Porter [17]) in a related problem
involving approximating the effect of small gaps on waves. It also shares similarities with the approach taken by Scharstein
[8] in a related problem in which the cavity is excited by plane waves from a semi-infinite domain. An alternative approach
here could have been to use the method of matched asymptotic expansions as in Mei [9] by connecting solutions to an inner
problem in the vicinity of the gap to an outer solution in which the gap acts as a point source. The outcome of the two
approaches have much in common although our central positioning of the gap within the cavity introduces difficulties
avoided by Mei [9] who considered only off-centre gaps. Recent unpublished work (Prof. David Abrahams, personal com-
munication) has followed this approach.

By using our new approximation for small gaps in the long wavelength limit we shall also be able to derive an explicit
expression for ′L (or l) in (1.1) for the geometry under consideration. The result is not a simple linear scaling with gap size as
is commonly assumed. In addition to making the connection with the Helmholtz resonance, Section 4 describes the effect
that higher-order cavity resonances have on | |T . In Section 5 we present numerical results which test the new approximation
against computations based on the exact formulation. Finally in Section 6 we summarise the paper and suggest how this
work could be used elsewhere.

2. Exact treatment of the problem

2.1. Formulation

An infinitely-long waveguide has parallel acoustically-hard walls along y ¼ 0 and y ¼ 1 for −∞ < < ∞x . A small gap in
the wall y ¼ 1 extends from = −x a to x ¼ a and connects the waveguide symmetrically to a rectangular basin or cavity of
width b2 and height c (see Fig. 1). All lengths are considered dimensionless, having being scaled by the channel width. The
acoustic pressure is written R ϕ{ ( ) }ω−x y, e ti having angular frequency ω and ϕ( )x y, satisfies the wave equation
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