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a b s t r a c t

This paper proposes a novel optimization concept for an oscillator with two degrees of
freedom. By using specially defined motion ratios, we control the action of springs to each
degree of freedom of the oscillator. We aim at showing that, if the potential action of the
springs in one period of vibration, used as the payoff function for the conservative os-
cillator, is maximized among all admissible parameters and motions satisfying Lagrange's
equations, then the optimal motion ratios uncouple vibration modes. A similar result
holds true for the dissipative oscillator having dampers. The application to optimal design
of vehicle suspension is discussed.

& 2017 Elsevier Ltd All rights reserved.

1. Introduction

In engineering practice a vibration isolator is often required to reduce the transmission of forces or displacements to
special bodies, mountings, or bearings while the system is excited. If the vibration of the bodies remains small and well
controlled around a desired position of equilibrium for most of excitations, a comfortable, light, and durable system is
created. The optimal design of vibration isolator can then be realized depending on the specific goal expressed in terms of
the so-called payoff (or objective) function [1,2]. The fact that spring forces depend on displacements, and damping forces
on velocities, often entice engineers to design a vibration isolator whose elements, springs and/or dampers, are positioned
at the places of putative large relative displacements (or velocities) of the bodies. However, it turns out that for oscillators
having several degrees of freedom and modes of vibration, this does not always lead to the optimal solution.

What is said above can at best be illustrated on the practical example of a conventional cars suspension. Because large
relative motions between the wheels and the chassis are visible, it seams that a position next to each wheel is the best for
springs and dampers to be placed [3–5]. Due to the complexity of the optimization problem many authors used a quarter car
model for the optimization purpose (see [6–8] and the references therein). Since in this case the motion of the system is
one-dimensional, all springs and dampers act in the direction of motion and their configuration is fixed. Thus, only the
spring rates and damper constants can be varied in this optimization. With the goal of maximizing isolation of the chassis
from a harmonic base excitation in the frequency domain to achieve the best ride quality of the vehicle, Alkhatib et al. [6]
used the root mean square of acceleration or displacement of the chassis as the payoff function. If the interest is in contrary
to minimize the dynamic tire load, then the variance of the dynamic load used by Sun et al. [8] serves as the payoff function.
The optimization using a half-car model considered for instance by Tamboli and Joshi [9], Giua et al. [10], Sun [11] and a
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full-car model by Jayachandran and Krishnapillai [12] deals again with fixed configurations of springs and dampers while
varying their characteristics to meet similar goals. Note, however, that the fixing of special configuration of springs and
dampers often exhibits some deficiency in damping of roll vibrations of conventional vehicle suspensions as shown by Le
and Pieper [13] in an analysis of forced vibration using a half-car model. The first step in modifying this design concept of
suspension by introducing a smart mechanism that adapts the installation ratios of both springs and dampers to different
modes of vibrations in equal way has been proposed by Pieper et al. [14]. Nowadays, especially in the tuning of vehicle
suspension elements, a huge effort is spend on lap time simulations using different numerical packages [15]. An advanced
approach is to measure the real-time motions on a specified system and control it by active springs and dampers. In this
case the physical property of each element can be changed immediately and the optimal control is done by software and
actuators at each time instant [16–21]. However, this approach only allows an optimization after bad motions have already
been detected. The common feature of traditional optimization of passive or active suspensions is that the concept of the
dynamic system including the configuration of springs and dampers is fixed at the beginning and only the physical prop-
erties of the elements are subject to variation. Independent from the choice of payoff function, this optimization practice
limits strongly the variability of dynamical system for comparison to select the overall best solution.

This paper focuses on a new optimization concept for an oscillator with the configuration of springs and dampers being
subject to variation. This is realized by a mechanism (rocker) having several motion ratios controlling the action of springs
and dampers to each degree of freedom. The variation of motion ratios allows to change the maximum force, induced by
springs or dampers, to different modes of vibration. Note that this optimization concept is close to that of topology opti-
mization of materials [22–24] or optimization of placement of piezo-patches in smart structures [25,26]. The springs get
used most effectively if the spring energies (and consequently the magnitude of spring forces) are maximal when acting
against the corresponding modes of vibration. This leads to the maximum of the total potential action of all springs over one
period of each vibration mode. The same can be said in the case of dissipative oscillators with springs and dampers. The aim
of this paper is to show that, if the potential action of the springs over one (conditional) period of vibration is used as the
payoff function to be maximized among all admissible parameters and motions satisfying Lagrange's equations, then the
optimal parameters controlling the action of springs uncouple modes of vibrations and the maximum available forces of
springs act against the normal modes.

In order to prove this statement rigorously we need to apply the theory of optimal control processes [27–29] to the
special case of time-independent control parameters. In this case we are dealing with the variational problem with con-
straints imposed on the state variables of the dynamical system in form of the equations of motion depending on the time-
independent control parameters. We formulate the extended Pontryagin's maximum principle and, alternatively, the ne-
cessary and sufficient conditions for the optimal control parameters of oscillators obeying the equations of small amplitude
vibrations. We then apply this theory to the oscillator having two degrees of freedom, first with springs, and then later with
springs and dampers, to prove the above statements. For simplicity of the analysis we restrict ourselves to the case of small
vibrations for which the springs and dampers can be regarded as linear.

The paper is organized as follows. In the next Section we present the theory of optimal control parameters for oscillators.
Sections 3 and 4 apply this theory to the conservative and dissipative oscillators, respectively. Finally, Section 5 discusses the
optimal design concept and concludes the paper.

2. Theory of optimal control parameters

We let m-dimensional vector = ( … )a aa , , m1 denote time-independent control parameters of a mechanical system under

consideration and assume that ∈ ⊆ a m, with  being the set of admissible control parameters. The motion of this
mechanical system is governed by the equations
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with × → f: n n. We introduce the payoff function
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where the end-time >T 0, running payoff × → r: n and end-time payoff → g: n are given. The problem is to find optimal
parameters *a that maximize payoff function (2) among all admissible ∈ a and ( )tx satisfying constraints (1). Note that the
control parameters = ( … )a aa , , m1 can be identified with the control processes ( ) = ( ( ) … ( ))t u t u tu , , m1 satisfying the constraints
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Thus, the above formulated problem is the special case of the problem considered in the theory of optimal control
processes [27–29].
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