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ABSTRACT

This paper presents a hybrid method that combines the B-spline wavelet on the interval
(BSWI) finite element method and spectral analysis based on fast Fourier transform (FFT)
to study wave propagation in One-Dimensional (1D) structures. BSWI scaling functions
are utilized to approximate the theoretical wave solution in the spatial domain and
construct a high-accuracy dynamic stiffness matrix. Dynamic reduction on element level
is applied to eliminate the interior degrees of freedom of BSWI elements and substantially
reduce the size of the system matrix. The dynamic equations of the system are then
transformed and solved in the frequency domain through FFT-based spectral analysis
which is especially suitable for parallel computation. A comparative analysis of four dif-
ferent finite element methods is conducted to demonstrate the validity and efficiency of
the proposed method when utilized in high-frequency wave problems. Other numerical
examples are utilized to simulate the influence of crack and delamination on wave pro-
pagation in 1D rods and beams. Finally, the errors caused by FFT and their corresponding
solutions are presented.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Guided wave techniques have been widely applied in structural health monitoring in recent years. The characteristics of
wave propagation must be studied to utilize guided wave techniques effectively in damage detection, especially in cases
wherein the numerical method is the only method available to solve complex problems. The finite element method (FEM) is
the most popular numerical calculation method to analyze the wave propagation. However, conventional FEM may become
inaccurate and inefficient when it is used for high-frequency wave problems because of the higher frequency and shorter
wavelength of guided waves. It is well known that temporal and spatial discretizations are critical for the accuracy and
efficiency in dynamic finite element analysis. A rule of thumb that there should be 10 nodes per wavelength has been widely
applied in the design of the finite element mesh [ 1-4]. Furthermore, Babuska et al. [5,6] found the “pollution error” will lead
to that the simple rule of thumb given above is not always adequate and extremely fined meshes are required for large
wavenumber. Alternatively, the time step for direct time-integration schemes is usually recommended for one-twentieth of
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the smallest period or the ratio of element length to wave speed [7]. These requirements indicate that the size of the system
matrix and the number of solving system equations in traditional FEM are extremely large to obtain sufficiently accurate
solution, which lead to that the solving process is awfully time-consuming.

Several improved FEMs have been presented to overcome the drawbacks of conventional FEM. Seriani and Oliveira [8]
proposed a theoretical analysis of the numerical dispersion of 2D and 3D spectral finite element methods in time-domain
for the isotropic elastic wave equation. Chen et al. and Yang et al. [9-11] proposed the BSWI wavelet approach in time
domain to solve the wave propagation problems in 1D, arch and 2D structures. Pahlavan et al. [12] applied a wavelet-based
spectral finite element approach to linear transient dynamics and elastic wave propagation problems. Joglekar and Mitra
[13] proposed a iterative strategy of Fourier spectral finite element method to analyze the interaction of flexural waves with
a breathing damage in slender beams. Nguyen et al. [14] modeled the 3D elastic waveguides of arbitrary cross-section
embedded in an unbounded solid matrix by combining a semi-analytical finite element method and a perfectly matched
layer technique. Kim and Bathe [15] analyzed the numerical dispersion property of the method of finite spheres used with
the Bathe method for implicit time integration when it is used for solving transient wave propagation problems.

Wavelet finite element method (WFEM) has elicited much attention because of its high accuracy. The concept of wa-
velets, which was originally used for signal processing, was introduced by Morlet in 1982 [16]. With the rapid development
and application in many areas, wavelet techniques have become the second most significant breakthrough after Fourier
transform. In 2001, Dahmen [17] reviewed the developments of wavelet schemes for numerical treatment of partial dif-
ferential equations, wherein the superiorities of wavelet schemes for numerical calculation were expounded in detail. He
Zhengjia and Chen Xuefeng's research group from China focused on the construction method of wavelet basis finite element
by using wavelet basis functions as interpolation functions; they successfully applied the technique in structure analysis [18]
and the diagnosis of crack faults [19,20]. Wavelets possess three special characteristics, namely, multi-scale, multi-resolu-
tion, and compact support [21]. Given their characteristic of multi-scale, wavelets can provide kinds of basis functions as
interpolation functions for FEM. The multi-resolution characteristic is highly suitable for the development of adaptive FEM,
and wavelet basis functions can localize arbitrary details because of the characteristic of compact support. Since the low-
order polynomial as interpolation function is difficult to approximate high-gradient variant fields produced in high-fre-
quency wave problems, compact-support wavelet basis functions will be a better option instead of simple polynomials to
construct the finite element. Various wavelets have been used for constructing the wavelet finite element, such as Dau-
bechies [22,23], B-spline [18,19], Hermitian [24,25] and so on. Among of them, the B-spline wavelet on the interval (BSWI) is
perhaps the best for numerical calculation of wave propagation [9,21], because of continuity, compact support, and com-
putational efficiency. As mentioned earlier, BSWI FEM has been successfully applied to wave propagation in several simple
structures [9-11]; it showed that only a few BSWI elements used can obtain highly accurate results. However, the WFEM
must still satisfy the strict requirements of time steps because step-by-step integration in the time domain is still adopted.

Another promising approach is the spectral element method (SEM). Narayanan and Beskos [26] combined the dynamic
stiffness method and fast Fourier transform (FFT) and introduced the foundational concept of SEM. Many researchers have
developed and applied SEM in the past few decades. Doyle et al. systematically studied the application of SEM to wave
propagation in structures, which include not only rods and beams but also vary cross-section waveguide [27], layered solids
[28], spectral super-element [29] and so on, and published a monograph in 1997 [30]. Lee et al. [31,32] extensively applied
SEM to various problems in structural dynamics. Gopalakrishnan et al. [33,34] focused on the SEM in composites and
inhomogeneous media in addition to its application to structural health monitoring and active vibration and wave control.
Joglekar and Mitra [13] proposed an iterative strategy extending the SEM to nonlinear analysis. In contrast to the con-
ventional FEM, the spectral element uses exact shape functions and thus treats the mass distribution within the structural
element exactly [34]. Accordingly, a regular structural member of any length but without discontinuities in geometry or
material properties can be modeled with a single spectral element [31]. However, obtaining an exact wave solution is not
always possible, especially when dealing with highly complex and multi-dimensional problems. Thus, the application of the
classical SEM has been limited to some extent.

In this study, a hybrid method that combines WFEM and FFT-based spectral analysis is developed to overcame the
disadvantage of WFEM in temporal resolution and extend the modeling flexibility of SEM. Wherein, the compacted-support
BSWI scaling functions are utilized to approximate the theoretical wave solution in the spatial domain and construct a high-
accuracy dynamic stiffness matrix. To verify the effectiveness of the proposed method, a comparative analysis of four dif-
ferent methods (conventional FEM, WFEM, SEM, and the proposed method) is conducted, and the spatial and temporal
resolution requirements of the four different methods are discussed in detail. Moreover, several damage models are in-
troduced to determine the effect of crack and delamination on wave propagation in rod and beam. Finally, the errors and
their corresponding solutions are discussed.

2. FFT-based BSWI approach in the frequency domain

2.1. Spatial approximation of wave solution through BSWI scaling function

As mentioned in introduction, the compacted-support BSWI defined in 2 [0, 1] is very suitable to approximate the
theoretical wave solution in the spatial domain. For scale j and the mth order BSWI (simply denoted as BSWIm; hereafter)
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