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a b s t r a c t

This paper presents an analytical solution for the one-dimensional acoustic field in a duct
with arbitrary mean temperature gradient and mean flow. A wave equation for the
pressure perturbation is derived which relies on very few assumptions. An analytical
solution for this is derived using an adapted WKB approximation. The solution is a su-
perposition of waves travelling in either direction and thus provides physical insight. It is
also very easy to calculate. The proposed solution is applied to ducts with a mean tem-
perature profile which varies axially with (i) a linear and (ii) a partial sine wave profile:
predictions are compared to those obtained by numerically solving the linearised Euler
equations (LEEs). The analytical solution reproduces the acoustic field very accurately
across a wide range of flow conditions which span both low and moderate-to-high sub-
sonic Mach numbers. It always performs well when the frequency exceeds a certain value;
when the mean temperature profile is linear, it also performs well to very low frequencies.
This increased frequency range for linear mean temperature profiles leads to its appli-
cation to more complicated profiles in a piecewise linear manner, axially segmenting the
temperature profile into regions that can be approximated as linear. The acoustic field is
predicted very accurately as long as enough segmentation points are used and the con-
dition for the linear mean temperature profile is satisfied: α| | > | |k0 , where k0 is the local
wave number when there is no mean flow and α is the normalised mean density gradient.
The proposed solution is extensively compared to previous analytical solutions, and is
found to be more accurate and reliable, especially at higher Mach numbers. The entropy
wave generated by communication between the acoustic waves and the distributed mean
temperature zone is calculated using the LEEs. It is found to remain very small across all
operating conditions, such that both the entropy wave and its impact on the acoustic field
can be neglected.

& 2017 Elsevier Ltd All rights reserved.

1. Introduction

Ducts sustaining both a mean flow and a mean axial temperature gradient are a common element of engineering sys-
tems, including gas turbine combustion chambers [1–4] and exhaust systems [5]. An accurate analytical solution for the
one-dimensional acoustic field within such ducts would be valuable, particularly if it could be represented as the
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superposition of waves travelling in either direction. This would offer enhanced physical insight, reduce the computational
cost of numerical tools used to predict [6–10] and control [11,12] thermoacoustic instabilities, and would bring benefits for
measurement approaches based on the two-microphone [13,14], and reproduction of underwater thermodynamic prop-
erties based on the solution of the inverse scattering problem in one dimension [15,16].

Approaches for deriving the analytical solution of the one-dimensional acoustic field generally fall within two categories.
The first is based on variable transformation. The wave equation is transformed to a standard second order ordinary dif-
ferential equations with known solutions. For example, Sujith and co-workers transformed the acoustic wave equation to
Bessel functions for linear and exponential mean temperature profiles [17]. This method was extended to derive exact
analytical solutions for quadratic [18] and polynomial mean temperature profiles [19] by the same research group. However,
all above solutions are limited to zero and very low Mach number mean flows. Davies [20] derived a wave equation as a
function of velocity perturbation based on the assumption of small linear mean temperature gradient and lowMach number
mean flow. The wave equation was transformed to a confluent hypergeometric function, but was eventually solved nu-
merically for most operating conditions due to convergence problems with the confluent hypergeometric series. Karthik
et al. [21] derived an acoustic wave equation for low Mach number mean flow. By further assuming a linear mean tem-
perature profile, they transformed the acoustic wave equation to a Gauss hypergeometric equation whose fundamental
solutions are two Gauss hypergeometric series. However, this method is limited to low Mach number flow and linear mean
temperature profiles. Furthermore, convergence problems occur for large frequencies and small mean temperature
gradients.

The second category uses linear perturbation theory and assumes that the acoustic wave equation consists of wave-like
solutions for slowly varying coefficients of the ordinary differential equation [22]. The solution can generally be expressed as
an exponential. Munjal and Prasad [23] derived a wave equation as a function of pressure perturbation, assuming small
linear mean temperature gradients and low Mach number mean flow. An analytical solution was obtained based on linear
perturbation theory and the Green's function approach. However, the gradients of mean density and velocity along the duct
were wrongly neglected in the wave equation, leading to inaccuracies. Peat [5] improved the wave equation to retain these
terms and assumed an exponential solution, which was the superposition of a base solution for no mean temperature
gradient and a small linearised perturbation solution. By balancing terms of different orders, he obtained an analytical
solution. Similar approximate analytical solutions were obtained by Dokumaci [24] based on linear perturbation theory and
a matrizant formulation of pressure and velocity perturbations. However, the above solutions are all limited to small linear
mean temperature gradients and low mean flow Mach numbers. Cummmings [25] derived an analytical solution using an
adapted WKB approximation and assuming sufficiently large frequencies and the absence of mean flow. Subrahmanyam
et al. [26] used a similar method to derive a family of exact time-domain travelling wave-type solutions in ducts with mean
temperature and area variations in the absence of mean flow. This WKB approximation method was extended to account for
mean flow [27]. However, too many terms were omitted in the wave equation and solutions are not accurate at larger mean
flow Mach numbers. To summarise, no analytical or semi-analytical solution for the one-dimensional acoustic field in a duct
has previously been presented which allows an arbitrary mean axial temperature gradient and a mean flow of moderate
subsonic Mach number.

This work derives an acoustic wave equation which relies on very few assumptions. It then uses an adapted WKB ap-
proach to derive the analytical solution for the one-dimensional acoustic field. The proposed analytical solution is simple
and applies to large mean temperature gradients and moderate-to-large mean flow Mach numbers. Furthermore, for linear
mean temperature profiles, it is seen to yield a particularly simple expression and to be accurate at both low and high
frequencies. This suggests that accurate prediction for arbitrary mean temperature profiles can be achieved by applying it in
a piecewise linear manner to an appropriately axially segmented mean temperature profile.

The remainder of the paper is organised as follows. The derivations of the acoustic wave equation and analytical solu-
tions are presented in Section 2 and 3 respectively. Section 4 introduces the linear and sine wave mean temperature profiles
and the two transfer functions used for validation of the proposed analytical solution. Validation of predictions for the linear
mean temperature profile are presented in Section 5, and for the sine wave mean temperature profile in Section 6. The
entropy wave generated by the communication between the acoustic waves and the distributed mean temperature zone,
and its effect on the acoustic field are quantitatively investigated in Section 7. The main equations to calculate the mean
thermodynamic properties within the duct are presented in Appendix A. Because the solution for the velocity perturbation
was not provided in Cummings' paper [27], it is derived in this work and is presented in Appendix B. Karthik's solutions
have been corrected and simplified for use – these are presented in Appendix C. Conclusions are drawn in the final section.

2. Acoustic wave equation

In general, previous work directly derives the acoustic wave equation from the mass and momentum equations, as-
suming that there is no thermal conductivity of the fluid (the isentropic assumption) [27,5,24,21]. The entropy is thereby
directly neglected. In this section, the acoustic wave equation is derived step by step. A constant cross-sectional area duct
sustaining a mean flow and mean temperature gradient is considered. Assuming a perfect inviscid gas, the one-dimensional
mass, momentum and energy conservation equations along with the perfect gas law along the duct give [28]:
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