
Parametric instability of spinning elastic rings excited by
fluctuating space-fixed stiffnesses

Chunguang Liu a, Christopher G. Cooley b, Robert G. Parker c,n

a University of Michigan – Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China
b Department of Mechanical Engineering and Energy Processes, Southern Illinois University Carbondale, Carbondale, IL 62901, USA
c Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA

a r t i c l e i n f o

Article history:
Received 29 January 2017
Received in revised form
24 March 2017
Accepted 29 March 2017
Handling Editor: Ivana Kovacic

Keywords:
Elastic ring
Gyroscopic systems
Parametric instability
Perturbation
Compliant gears
Mesh phasing

a b s t r a c t

This study investigates the vibration of rotating elastic rings that are dynamically excited
by an arbitrary number of space-fixed discrete stiffnesses with periodically fluctuating
stiffnesses. The rotating, elastic ring is modeled using thin-ring theory with radial and
tangential deformations. Primary and combination instability regions are determined in
closed-form using the method of multiple scales. The ratio of peak-to-peak fluctuation to
average discrete stiffness is used as the perturbation parameter, so the resulting pertur-
bation analysis is not limited to small mean values of discrete stiffnesses. The natural
frequencies and vibration modes are determined by discretizing the governing equations
using Galerkin's method. Results are demonstrated for compliant gear applications. The
perturbation results are validated by direct numerical integration of the equations of
motion and Floquet theory. The bandwidths of the instability regions correlate with the
fractional strain energy stored in the discrete stiffnesses. For rings with multiple discrete
stiffnesses, the phase differences between them can eliminate large amplitude response
under certain conditions.

& 2017 Elsevier Ltd All rights reserved.

1. Introduction

Gears used in aerospace applications are designed to be thin to reduce weight. These thin, compliant gears experience
large loads and operate at high rotation speeds, so elastic gear deformation is a substantial issue. Gear elastic vibrations are
experimentally found in Refs. [1,2]. Excitation in geared systems comes from the changing contact conditions on the gear
teeth as the gears rotate kinematically. In many dynamic models, this excitation is represented by fluctuating mesh stiff-
nesses. When the fluctuation frequency is near resonant gear speeds large dynamic response occurs, which leads to large
dynamic loads, potential structural failure, and noise.

Gear weight reduction is achieved by using thin webs with large facewidths (for the large loads) or ring-like gears with
no webs. Such lightweight gears are prone to deform elastically, and can be modeled geometrically as rings. The vibration of
spinning, elastic rings has been intensively investigated in literature. Carrier [3] derived the governing equations of a ro-
tating ring with in-plane flexural vibrations. General equations for the vibration of rotating bodies and the natural fre-
quencies of a rotating ring were obtained by Johnson [4]. Bert and Chen [5] investigated the bending and twisting vibrations
of rotating rings on a uniform elastic foundation. Their analysis included in-plane and out-of-plane deformations. Using
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Hamilton's principle, Bickford and Reddy [6] derived the equations of motion for rotating rings with in-plane vibrations. The
governing equations for rotating free rings were derived in the stationary reference frame using Lagrangian strain by Kim
and Chung [7]. Rao and Sundararajan [8] studied the vibration of nonrotating rings with fixed supports. Allaei et al. [9]
investigated the vibration of nonrotating rings attached to lumped masses and stiffnesses. Wu and Parker [10] studied the
vibration of nonrotating rings on a general elastic foundation. Vangipuram Canchi and Parker [11] studied the parametric
instability of rotating rings subjected to moving, time-varying springs. Their equations of motion were derived in the ro-
tating, ring-fixed reference frame. Cooley and Parker [12] investigated the vibration of rotating elastic rings coupled to
space-fixed discrete stiffnesses. Cooley and Parker [13] showed that an inextensible model does not accurately predict the
vibrations of elastic rings that rotate at high speeds or are attached to discrete stiffnesses. The response of this system to
periodic fluctuations of the discrete stiffnesses, which is practically relevant for the dynamic response in gear systems, has
not been addressed.

Investigation into parametric instability of lumped-parameter gear models can be found in Refs. [14–19], for example.
Fewer works have investigated the parametric instability of compliant gears. Vangipuram Canchi and Parker [20] studied the
parametric instability of nonrotating rings subjected to moving, time-varying springs. This work was extended to rotating
rings in Ref. [11]. In these works the average spring stiffnesses are assumed to be small compared to ring bending stiffness, and
they mainly focus on the instabilities associated with the rotation of the springs. Parker and Wu [21] investigated the para-
metric instability of planetary gears with stationary, elastic ring gears. For geared systems parametric excitation causes large
amplitude vibration and instability. In other systems, parametric excitation can reduce vibrations [22–24].

This study investigates the parametric instability of spinning rings excited by an arbitrary number of periodically fluc-
tuating discrete stiffnesses. The instability boundaries are derived in closed-form using the method of multiple scales [25].
This paper starts from the vibration model of a rotating ring proposed by Cooley and Parker [12], where the discrete
stiffnesses coupled with the rotating ring are included in the eigenvalue problem. The perturbation analysis is formulated
using the ratio of peak-to-peak fluctuation to the average discrete stiffnesses as the small parameter, so the analysis is not
limited to small average values of discrete stiffnesses. Parametric instability regions are compared to a similar model that
assumes small average discrete stiffnesses proposed by Vangipuram Canchi and Parker [11]. The effects of the phase dif-
ferences between time-varying discrete stiffnesses on the bandwidths of the instability regions are investigated for rings
with two stiffnesses and with multiple equally spaced stiffnesses. The accuracy of the perturbation results is investigated by
comparing them to results obtained by direct numerical integrations and Floquet theory. Numerical results are demon-
strated for compliant gears used in aircraft engine applications.

2. Analytical model

The uniform elastic ring shown in Fig. 1 rotates at constant speed Ω. It vibrates elastically with radial ( θ( )u t, ) and
tangential deformations ( θ( )v t, ). To accurately model the vibrations of these high-speed spinning structures connected to
discrete stiffnesses, no inextensibility constraints are employed [13]. The ring's neutral axis radius is R, cross-sectional area is
A, and cross-sectional area moment of inertia relative to the neutral axis is I. The ring has density ρ and elastic modulus E.
The ring is supported by an elastic foundationwith radial (k̃r) and tangential ( ˜

θk ) stiffness per unit arclength. The subsequent
formulation uses the elastic foundation stiffnesses = ˜k Rkr r and = ˜

θ θk Rk , where kr and kθ are the elastic foundation stiff-
nesses per radian of angular variation. The ring is attached to Ns space-fixed, tangentially oriented, periodically fluctuating
(with period π Ω2 / m, whereΩm is the fluctuation frequency) discrete stiffnesses kmi located circumferentially around the ring

Fig. 1. Schematic of the rotating, elastic ring model with an arbitrary number of space-fixed, fluctuating discrete stiffnesses. The { }E E,1 1 basis is fixed in
space. The radial (u) and tangential (v) deformations are measured with respect to the stationary, cylindrical { }θe e,r basis.
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