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a b s t r a c t

Modal tests on large structures are often performed in multiple setups for practical rea-
sons. Several sensors are kept fixed as reference sensors over all setups, while the other, so
called roving sensors, are moved from one setup to another. This paper develops an op-
timal sensor placement strategy for multi-setup modal identification, which simulta-
neously optimizes the locations of the reference sensors and roving sensors. As an op-
timality criterion, the Information Entropy is adopted, which is a scalar measure of un-
certainty in the Bayesian framework. The focus in the application goes to repetitive
structures where modes typically occur in clusters, with closely spaced natural fre-
quencies and similar wavelengths. The proposed strategy is illustrated for selecting op-
timal positions of uni-axial sensors for a repetitive frame structure. The influence of the
number of reference sensors and two strategies for positioning roving sensors, i.e. a
cluster and a uniform distribution of roving sensors, are investigated. The number of re-
ference sensors is found to be preferably equal to or larger than the number of modes to
be identified. In this case, the information content, as quantified by the Information En-
tropy, is not very sensitive to the roving sensor strategy. If less reference sensors are used,
it is highly preferred to distribute the roving sensors uniformly over the structure instead
of clustering them. The proposed strategy has been validated by an experimental modal
test on a floor of an office building of KU Leuven, which has a nearly repetitive structural
layout. The results show how optimally locating sensors allows extracting more in-
formation from the data. Though the focus is on applications involving repetitive struc-
tures, the proposed strategy can be applied to multi-setup modal identification of any
large structure.

& 2017 Elsevier Ltd All rights reserved.

1. Introduction

Modal analysis [1,2], i.e. identifying modal characteristics frommeasured responses, can be used for many purposes, such
as model updating, structural health monitoring, damage detection and structural control. The accuracy of the identified
modal characteristics depends on the number and locations of sensors. The number of positions covered in the experiments
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should be sufficiently large to accurately represent the mode shapes, i.e., to avoid spatial aliasing. Due to practical limitations
on the number of sensors, modal testing of large structures is usually carried out in multiple setups [3]. The number of
setups determines the measurement time. It is therefore necessary to find the optimal number and locations of the re-
ference and roving sensors in order to obtain the required information within a reasonable time.

A careful choice of sensor positions is particularly important for repetitive structures, which have regular structural
layout, e.g. buildings with repetitive floor plan. In such structures, modes with clustered natural frequencies occur [4]. It is
important to determine proper sensor locations such that the closely spaced modes are distinguished in modal identifi-
cation. The distinction of modes is necessary, for example, in model calibration when pairing the identified and computed
modes.

The dynamic behaviour of repetitive (periodic) structures has been investigated by means of wave propagation analysis
[5,6] based on the Floquet theory. Characteristic free waves and propagation constants are used to describe the dynamic
behaviour of infinite periodic structures [7]. For a one-dimensional infinite periodic structure, nc pairs of free waves can
propagate through the structure at any frequency with nc the number of coupling degrees of freedom (DOFs) between two
adjacent units. Each pair contains identical but opposite going free waves, characterized by a negative and positive pair of
propagation constants. The real part of the propagation constant represents the attenuation of the wave across the unit cell
and the imaginary part represents the corresponding phase change.

The natural frequencies of finite periodic structures have been studied based on the wave propagation analysis for both
mono-coupled [8] and multi-coupled [9] one dimensional periodic structures. For mono-coupled structures, the adjacent
units of a periodic structure are coupled by a single DOF; while in a multi-coupled structure, the units are connected by
multiple DOFs. In [8], the natural frequencies of finite periodically supported beams, representing mono-coupled one-di-
mensional periodic structures with symmetric units, were studied by analyzing the propagation constants. Both simply
supported and clamped ends were considered as the boundary conditions of the beams. It was found that the natural
frequencies lie inside or at the boundaries of the propagation zones of the structure and the number of modes in each
propagation zone is equal to the number of bays [8]. A propagation zone is a frequency range where the free characteristic
wave is not decaying, i.e. the real part of the propagation constant is zero. It can therefore be concluded from the study in [8]
that mode clustering occurs in the propagation zone of mono-coupled periodic structures with symmetric units and free or
clamped boundaries. For multi-coupled periodic structures, the analysis becomes more involved as there is more than one
pair of free waves at each frequency. In a frequency range where there is only a single pair of non-decaying waves, the
number of modes is less than or equal to the number of bays if the periodic structure has a sufficiently large number of units
[9]. The number of modes outside of these frequency ranges is difficult to predict on beforehand.

In order to distinguish between clustered modes in the modal identification of repetitive structures, a careful choice of
sensor locations is needed. Optimal sensor placement has received considerable attention in the field of structural dynamics
[10–19]. Criteria proposed for optimal sensor placement include the Modal Kinetic Energy [11,12], Effective Independence
[11], some norm (e.g. determinant and trace) of the Fisher Information Matrix [13,14], Information Entropy (IE) [15] and the
off-diagonal terms of the Modal Assurance Criterion (MAC) matrix [16]. Modal Kinetic Energy [11,12] is used to select the
sensor locations with possibly the largest modal responses. Effective Independence [11] aims at selecting the sensor loca-
tions such that the observed modes are linearly independent. It was found that the Effective Independence method is an
iterated version of the Modal Kinetic Energy method [17]. The Effective Independence method is intrinsically equivalent to
maximizing the determinant of the Fisher Information Matrix. The Fisher Information Matrix [13,14] is the inverse of the
covariance matrix of the estimates characterizing the uncertainty on the estimated parameters, which can be modal co-
ordinates for modal identification or parameters related to the stiffness, mass and damping of the structure for parameter
estimation. When the sensor locations are chosen to maximize some norm (determinant, trace) of the Fisher Information
Matrix, the estimation uncertainty is minimized. In the Bayesian framework for parameter estimation, Papadimitriou, Beck
and Au [15] have proposed to minimize the Information Entropy. The Information Entropy is defined as a scalar measure of
the uncertainty in the parameter estimates. If the number of data is sufficiently large, minimizing the Information Entropy
becomes equivalent to maximizing the determinant of the Fisher Information Matrix [18]. The influence of the spatial
correlation of the prediction errors on the Information Entropy [19] was studied. It was found that this avoids closely spaced
sensors which are generally believed to provide redundant information. The Modal Assurance Criterion (MAC) is a measure
of the collinearity between two mode shape vectors [1,20]. Minimizing the off-diagonal terms of the MAC matrix results in
less dependent mode shape vectors. The Modal Kinetic Energy method, Effective Independence method and the MAC matrix
method can be used to determine the optimal sensor locations for modal identification of structures. The Fisher Information
Matrix method and Information Entropy method are suitable for both modal identification and parameter estimation,
depending on the type of the estimation parameters.

Finding the optimal sensor locations by full enumeration of all sensor configuration candidates is difficult or even im-
possible when the number of possible sensor locations is large. A number of studies have focused on computational al-
gorithms which can improve the efficiency, including heuristic algorithms [18,21,22], genetic algorithms [23,24] and meta-
heuristic algorithms [25]. Genetic algorithms [23,24] have been used to find optimal solutions of sensors locations. Studies
on meta-heuristic algorithms inspired from nature were also conducted [25]. As an alternative to these algorithms which
involve a random search component, Sequential Sensor Placement algorithms have been studied. Based on the Information
Entropy, two heuristic algorithms i.e. Forward and Backward Sequential Sensor Placement (FSSP and BSSP) have been
proposed [18] to find suboptimal sensor locations. It was found that these Sequential Sensor Placement algorithms generally
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