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a b s t r a c t

This paper studies quasiperiodic vibration-based energy harvesting in a forced nonlinear
harvester device in which time delay is inherently present. The harvester consists of a
delayed Duffing-type oscillator subject to a harmonic excitation and coupled to a piezo-
electric circuit. We consider the case of a monostable system and we use perturbation
techniques to approximate quasiperiodic responses and the corresponding averaged
power amplitudes near the primary resonance. The influence of different system para-
meters on the performance of the quasiperiodic vibration-based energy harvesting is
examined and the optimal performance of the harvester device in term of time delay
parameters is studied. It is shown that in the considered harvester system the induced
large-amplitude quasiperiodic vibrations can be used to extract energy over broadband of
excitation frequencies away from the resonance, thereby avoiding hysteresis and in-
stability near the resonance.

& 2017 Elsevier Ltd All rights reserved.

1. Introduction

In vibration-based energy harvesting (EH) systems subject to a harmonic excitation EH performance is considerably
limited when the harvester device operates in a linear regime. This is because the natural frequency of the mechanical
subsystem must always match the fundamental frequency of the excitation [1–3]. To overcome such a limitation nonlinear
attachments is often used to substantially extend the bandwidth of the harvester over a broadband of excitation frequencies,
either in the case of monostable harvester devices with hardening characteristic [4–7] or in the case of bistable ones [6,8–
11]. However, exploiting nonlinear attachments in the harvester gives rise to hysteretic behavior in the frequency response
near the resonance [12] and therefore the problem of instability of the response remains. To circumvent such instabilities
near the nonlinear resonance, the idea of exploiting quasiperiodic (QP) vibration away from the resonance to extract energy
in broadband of frequency has been proposed [13,14].

Yet, in certain harvester systems under aerodynamic and base excitations, it was shown that QP vibrations cause a
substantial reduction in the harvested power [15,16] beyond the flutter speed and then extracting energy from such sys-
tems, QP vibrations should be avoided. Nevertheless, it was demonstrated recently that in the presence of time delay QP
vibrations can have a beneficial effect on the EH performance [14]. Indeed, in a delayed van der Pol-type harvester system
under delay amplitude modulation, the induced large-amplitude QP vibrations occurring in broad range of parameters were
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used to extract energy with good performance. The idea of using time delay was also used to extend the dynamic range of an
energy harvester with nonlinear damping [17] demonstrating that this concept can provide substantial performance in the
EH capacity.

Taking advantage from using QP vibrations to extract energy from a delayed self-excited harvester system [14], the
present work explores QP vibration-based EH in a delayed Duffing harvester device subject to harmonic external excitation.
This study can be useful in certain applications for which a delayed state feedback is present in the mechanical subsystem of
the harvester. For instance, in milling and turning operations the inherent time delay in the position commonly arises in the
process [18–21] such that the time delay is not considered as an additional input power of the harvester. However, in
applications where the time delay is introduced as an input power, the problem of energy balance between the generated
and the consumed powers should be examined [17]. On the other hand, the forced Duffing oscillator is usually adopted in
the model of orthogonal cutting [22–24,21] for which the harmonic forcing is generated by the cutting process.

Although the dynamics of a forced delayed Duffing oscillator has been largely studied in the literature [25–29], the
exploitation of the induced QP vibrations to extract energy remains missing, which forms the objective of the present work.
This paper will first present the harvester system in the next section. The periodic response and the output average power
are then approximated using the multiple scales method. In Section 3, the QP response is obtained applying the second-step
multiple scales method and the corresponding harvested power is examined. The influence of different system parameters
of the harvester device on the EH performance is analyzed in Section 4 and a summary of the results is given in the
concluding section.

2. Model description and periodic energy harvesting

Consider an energy harvester system consisting in an excited Duffing oscillator coupled to an electrical circuit through a
piezoelectric device. We assume that the mechanical component of the harvester is under an inherent time delayed in the
position such that the governing equation for the harvester can be written in the dimensionless form as

δ ω γ χ α τ λ¨( ) + ̇( ) + ( ) + ( ) − ( ) = ( − ) + ( ) ( )x t x t x t x t v t x t f tcos 10
2 3

β κ(̇ ) + ( ) + ̇( ) = ( )v t v t x t 0 2

where x(t) is the relative displacement of the rigid mass m, v(t) is the voltage across the load resistance, δ is the mechanical
damping ratio, γ is the stiffness parameter, χ is the piezoelectric coupling term in the mechanical attachment, κ is the
piezoelectric coupling term in the electrical circuit, β is the reciprocal of the time constant of the electrical circuit, f and λ
are, respectively, the amplitude and the frequency of the excitation, while α and τ are, respectively, the feedback gain and
time delay. It is assumed that time delay is inherently present in the harvesting system, as in the milling and turning
operations [18–21] for which Eq. (1) with χ = 0 is commonly used to model such processes. The case where the time delay is
included as a control within the electromagnetic coupling was considered recently in [30]. Note that the dynamics of the
delayed Duffing oscillator in the absence of the piezoelectric coupling (Eq. (1) with χ = 0) has been examined in details
[28,29], including bifurcation and stability of periodic and QP solutions Fig. 1.

To investigate the response of the harvester system (1), (2) near the primary resonance we suppose the resonance
condition λ ω σ= +0 where s is a detuning parameter. The method of multiple scales [31] is implemented by introducing a

bookkeeping parameter ϵ and scaling parameters as δ δ γ γ χ χ α α= ϵ ˜ = ϵ˜ = ϵ˜ = ϵ ˜ = ϵ˜f f, , , , , σ σ= ϵ ˜2 . Thus, Eqs. (1), (2) read
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Applying the multiple scales method [31] one obtains the modulation equations

Fig. 1. Schematic description of the EH system.
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