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a b s t r a c t

Locally resonant metamaterials are characterized by bandgaps at wavelengths that are
much larger than the lattice size, enabling low-frequency vibration attenuation. Typically,
bandgap analyses and predictions rely on the assumption of traveling waves in an infinite
medium, and do not take advantage of modal representations typically used for the
analysis of the dynamic behavior of finite structures. Recently, we developed a method for
understanding the locally resonant bandgap in uniform finite metamaterial beams using
modal analysis. Here we extend that framework to general locally resonant 1D and 2D
metastructures (i.e. locally resonant metamaterial-based finite structures) with specified
boundary conditions using a general operator formulation. Using this approach, along
with the assumption of an infinite number of resonators tuned to the same frequency, the
frequency range of the locally resonant bandgap is easily derived in closed form. Fur-
thermore, the bandgap expression is shown to be the same regardless of the type of vi-
bration problem under consideration, depending only on the added mass ratio and target
frequency. For practical designs with a finite number of resonators, it is shown that the
number of resonators required for the bandgap to appear increases with increased target
frequency, i.e. more resonators are required for higher vibration modes. Additionally, it is
observed that there is an optimal, finite number of resonators which gives a bandgap that
is wider than the infinite-resonator bandgap, and that the optimal number of resonators
increases with target frequency and added mass ratio. As the number of resonators be-
comes sufficiently large, the bandgap converges to the derived infinite-resonator bandgap.
Furthermore, the derived bandgap edge frequencies are shown to agree with results from
dispersion analysis using the plane wave expansion method. The model is validated ex-
perimentally for a locally resonant cantilever beam under base excitation. Numerical and
experimental investigations are performed regarding the effects of mass ratio, non-uni-
form spacing of resonators, and parameter variations among the resonators.

& 2017 Elsevier Ltd All rights reserved.

1. Introduction

Inspired by photonic crystals in electromagnetism, researchers have long investigated phononic crystals for their po-
tential to filter or redirect elastic waves [1]. Phononic crystals exhibit bandgaps (i.e. frequency ranges where elastic or
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acoustic waves cannot propagate) produced by Bragg scattering [2–4], which occurs when the wavelength of the incident
wave is on the order of the lattice constant of the crystal [5,6]. Therefore, a fundamental limitation of Bragg-based phononic
crystals is that it is only possible to create low-frequency bandgaps using very large structures. In their seminal work, Liu
et al. [7] showed the potential for locally resonant metamaterials to create bandgaps at wavelengths much larger than the
lattice size, enabling the creation of low-frequency bandgaps in relatively small structures. Locally resonant metamaterials
contain resonating elements, whether mechanical [7,8] or electromechanical [9–11], which are capable of storing and
transferring energy. A significant body of research has examined locally resonant elastic/acoustic metamaterials of various
types. Ho et al. [8] examined a similar system to Liu et al. [7] using a rigid frame with rubber-coated metal spheres as
resonators. For that same type of system, Liu et al. [12] found analytic expressions for the effective mass densities of 3D and
2D locally resonant metamaterials, showing that the effective mass becomes negative near the resonant frequency.
Simplifying the analysis, others have used lumped-mass models to obtain the locally resonant bandgap [13,14]. Other
researchers have studied different implementations of resonators for different types of elastic waves [15–21], and two-
degree-of-freedom resonators [22]. Moving towards analytical predictions for the bandgap edge frequencies, Xiao et al. [23]
used the plane wave expansion method to study flexural waves in a plate with periodically attached resonators, giving a
method to predict the edges of the bandgap. Peng and Pai [24] also studied a locally resonant metamaterial plate, finding an
explicit expression for the bandgap edge frequencies.

Much of the research on locally resonant metamaterials has relied on unit-cell based dispersion analysis, using tech-
niques such as the plane wave expansion method to obtain the band structure of the metamaterial. This type of analysis
lacks the information of modal behavior and cannot readily answer questions such as the dependence of the bandgap width
on the number and spatial distribution of attachments in a finite structure. To this end we recently presented [25] a modal

Nomenclature

Bi Boundary differential operator of order
[ − ]p0, 2 1

D One or two-dimensional domain of the system
Dj Subdomain of D containing the position of the

jth resonator
( )F sP, Laplace transform of ( )f tP,

Hr(s) Laplace transform of η ( )tr
ω( )M j Effective modal dynamic mass

N Number of modes used in the discretization of
the field variable w

P Polynomial associated with the stiffness op-
erator 

Qr(s) Laplace transform of qr(t)
S Total number of resonators on the structure
Sopt Number of resonators that gives the greatest

effective bandgap width Δω( )S
( )U tP, Laplace transform of ( )u tP,

Uj(s) Laplace transform of uj(t)
( )W Gm1 Plane wave amplitude of the primary structure

associated with the mth reciprocal lattice
vector Gm

Wb(s) Laplace transform of wb(t)
ΔDj Characteristic size of the subdomain Dj

Δω( )S Effective bandgap width with S resonators on
the structure

Δω∞ Bandwidth of the infinite-resonator locally
resonant bandgap

Ωr Normalized rth structural resonant frequency
Ψ ( )sr Laplace transform of ψ ( )tr
δ( )P Dirac delta function
δij Kronecker delta
η ( )tr Modal coordinate for the displacement ( )w tP,

corresponding to the rth mode of the plain
structure

ω̂ Normalized excitation frequency

 Stiffness differential operator of order p2
μ Ratio of resonator mass to plain structure

mass
ω Excitation frequency
ωr rth resonant frequency of the plain structure
ωt Identical target frequency of all of the re-

sonators on the structure
ωres,j Natural frequency of the jth resonator
∂D Boundary of the domain D
ϕ ( )Pr rth mode shape of the plain structure
ψ ( )tr Modal coordinate for the resonator displace-

ment field ( )u tP, corresponding to the rth
mode of the plain structure

s Standard deviation in resonator natural
frequencies

Gm mth reciprocal lattice vector
P Position of a point in the domain
Pj Position of the jth resonator
k Bloch wavevector

( )f tP, External forcing in the domain
kj Stiffness of the jth resonator

( )m P Mass density at a point in the domain
mj Mass of the jth resonator
mp j, Point mass at the attachment location of the

jth resonator
ntrials Number of random sets of normal random

distributions of resonator natural frequencies
p Integer defining the order of the governing

partial differential equation
qr(t) Modal excitation of the rth mode
s Complex Laplace variable

( )u tP, Displacement of the continuous resonator
field at a point in the domain

uj(t) Relative displacement of the jth resonator
( )w tP, Displacement of a point in the domain

wb(t) Base motion of the structure
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