
Simulation Modelling Practice and Theory 68 (2016) 1–17 

Contents lists available at ScienceDirect 

Simulation Modelling Practice and Theory 

journal homepage: www.elsevier.com/locate/simpat 

A zero-crossing detection algorithm for robust simulation of 

hybrid systems jumping on surfaces 

David A. Copp 

a , ∗, Ricardo G. Sanfelice 

b , ∗

a Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106-9560, USA 
b Department of Computer Engineering, University of California, Santa Cruz, CA 95064, USA 

a r t i c l e i n f o 

Article history: 

Received 4 March 2016 

Revised 27 May 2016 

Accepted 18 July 2016 

Keywords: 

Hybrid systems 

Zero-crossing detection 

Simulation 

a b s t r a c t 

Hybrid systems are inherently fragile with respect to perturbations when their state ex- 

periences jumps on surfaces. Zero-crossing detection algorithms are capable of robustly 

detecting the crossing of such surfaces, but, up to now, the effects of adding such algo- 

rithms to the system being simulated are unknown. In this paper, we propose a mathe- 

matical model for hybrid systems that incorporates zero-crossing detection as well as a 

hybrid simulator for it. First, we discuss adverse effects that measurement noise and dis- 

cretization can have on hybrid systems jumping on surfaces and prove that, under mild 

regularity conditions, zero-crossing detection algorithms can robustify the original system. 

Then, we show that integration schemes with zero-crossing detection actually compute a 

robustified version of the fragile nominal model. In this way, we rigorously characterize 

their effect on solutions to the simulated system. Finally, we show that both the model 

and simulator are not only robust, but also that the hybrid simulator preserves asymptotic 

stability properties, semiglobally and practically (on the step size), of the original system. 

Several examples throughout the paper illustrate these ideas and results. 

© 2016 Published by Elsevier B.V. 

1. Introduction 

This work considers dynamical systems with a state that experiences instantaneous resets (jumps) when it hits a switch- 

ing surface S . A switching surface is typically defined as the zero-level set of a continuously differentiable function, defining 

in this way a codimension one submanifold of R 

n ; see, e.g., [1–3] . The state is denoted by x and takes values from a region 

of operation X ⊂ R 

n . When x is away from the surface S, the continuous dynamics (flows) of the system are given by a 

differential equation. This can be written more precisely as 

˙ x = f (x ) when x ∈ X \ S. (1) 

When x hits the surface S while in the region of operation X , the state is reset via a difference equation which defines 

the jumps of the system. More precisely, the new value of x after the jump, denoted x + , is determined by 

x + = g(x ) when x ∈ S ∩ X . (2) 
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In this way, the trajectories are allowed to flow when x ∈ X \ S and are allowed to jump when x ∈ S ∩ X . This model cap- 

tures the dynamics of control systems in which a controller makes decisions when certain variables hit a surface. For in- 

stance, in reset control systems (see, e.g., [4–7] ), the output of the controller is reset to zero whenever its input and output 

satisfy an algebraic condition. Reset controllers have been found useful in applications as they improve the performance 

of linear systems [4] . In state-dependent impulsive control systems, (see, e.g., [1] , [8] ), jumps occur when the state of the 

system belongs to a surface in the state space of the system. Impulsive controllers are widely used in robotics to switch 

among several feedback laws when the state of the system reaches a surface [9,10] . 

Several difficulties arise when dealing with systems jumping on surfaces. One such difficulty is with “grazing” of the 

flowing solution at the boundary of the switching surface S without crossing over it. This can lead to non-unique solutions 

and is known as the grazing phenomenon. For a discussion of methods to handle this phenomenon, see [11] . Further diffi- 

culties may be caused by perturbations due to measurement noise or numerical errors due to discretization. For example, 

suppose that the value of the state x of the system is perturbed when nearby S (e.g., due to measurement noise). Letting 

e denote this perturbation on x , the perturbed state can be written as x + e . Suppose that, for a given solution x ( t ) to sys- 

tem (1) and (2) (using an appropriate notion of solution), e is zero when x (t) � = S but equal to a nonzero constant ε when 

x (t) = S . Then, when the perturbation e is added, for any nonzero ε, the same solution x ( t ) will not satisfy the condition 

x (t) + e (t) ∈ S, and therefore, will not jump at the instant that it would without noise. This suggests that arbitrarily small 

perturbations to (1) and (2) can generate trajectories that are nowhere close to the trajectories of the nominal system; see 

[12] for related discussions. Similarly, issues can arise from numerical errors introduced by discretization, such as numerical 

integration errors. In the presence of small numerical integration errors, which can be made arbitrarily small by adjusting 

the step size used in the simulator, trajectories obtained through simulation may never hit the surface, and therefore, never 

jump. 

One way to resolve the issue of the numerical solution never hitting the switching surface, which is widely used in 

simulation packages, is to include zero-crossing detection (ZCD) algorithms to detect crossing of the surface S . For instance, 

in MATLAB/Simulink, a block called Hit Crossing detects when the input of the block u reaches a specified offset parameter 

value u ∗ (other blocks and local ZCD options are also available in MATLAB/Simulink). The output of the block equals 1 when 

the value of the input has hit or crossed the offset parameter, or 0 otherwise. In fact, MATLAB/Simulink help files note the 

following [13] : 

“if the input signal is exactly the value of the offset value after the hit crossing is detected, the block continues to 

output a value of 1. If the input signals at two adjacent points bracket the offset value (but neither value is exactly 

equal to the offset), the block outputs a value of 1 at the second time step.”

More precisely, denoting the step size by s , this block determines if the sign of u − u ∗ at the integration time t has 

changed with respect to its value at the previous integration time t − s, i.e., it determines whether 

(u (t) − u 

∗)(u (t − s ) − u 

∗) ≤ 0 . (3) 

In order to determine whether this condition holds, a memory state must be added to keep track of the sign (relative to u ∗) 

of the previous input to the block. While zero-crossing detection might be a remedy to detect the crossings of S, a simulator 

utilizing ZCD actually modifies the original system by incorporating an extra mechanism for the detection of zero crossings. 

On the other hand, the relationship between the simulations obtained with ZCD and the true solutions of a system is not 

well understood. 

The purpose of this paper is to introduce a mathematical framework for theoretical study of such algorithms and their 

effect in simulation of hybrid systems. To that end, the effect of perturbations to hybrid systems jumping on surfaces is 

highlighted. In particular, we point out that measurement noise and discretization due to numerical integration can lead 

to simulations that do not hit the surface and never jump. Following the ideas discussed above regarding zero-crossing 

detection algorithms used in software packages, we propose a mathematical model of a hybrid system incorporating a zero- 

crossing algorithm. We prove that, under mild regularity conditions, such a resulting hybrid system not only includes all of 

the nominal solutions (no perturbations) to the original system but is also robust to measurement noise. We argue that, 

rather than computing the solutions to the discretization of the fragile nominal model (1) and (2) , integration schemes with 

zero-crossing detection actually compute the solutions of a robustified version of the fragile nominal model. Finally, we 

propose a hybrid simulator for the hybrid system with incorporated zero-crossing detection. As a difference to [14–16] , we 

focus on detection of zero-crossing rather than accurate location, which is another important issue in simulating systems 

like (1) and (2) . Even though we do not discuss finding accurate locations of zero-crossings, we show that our proposed 

hybrid simulator enjoys the following properties, which are illustrated in examples throughout the paper: 

(1) Trajectories obtained with the proposed simulator with zero-crossing detection approximate the solutions to the orig- 

inal hybrid system with arbitrary precision. See Theorem 5.8 . 

(2) The proposed simulator with zero-crossing detection preserves the asymptotic stability properties of the original hy- 

brid system. Furthermore, the proposed simulator with zero-crossing detection has an asymptotically stable compact 

set that converges to the asymptotically stable compact set of the original hybrid system. See Theorems 5.10 and 5.11 . 

An important feature of the proposed hybrid simulator is that it confers the above properties to the simulation of the 

original hybrid system by minimally affecting the original system. In fact, the only addition to the original system consists 
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