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a b s t r a c t

The problem of non-linear, steady state vibration of beams, harmonically excited by
harmonic forces is investigated in the paper. The viscoelastic material of the beams is
described using the Zener rheological model with fractional derivatives. The constitutive
equation, which contains derivatives of both stress and strain, significantly complicates
the solution to the problem. The von Karman theory is applied to take into account
geometric nonlinearities. Amplitude equations are obtained using the finite element
method together with the harmonic balance method, and solved using the continuation
method. The tangent matrix of the amplitude equations is determined in an explicit form.
The stability of the steady-state solution is also examined. A parametric study is carried
out to determine the influence of viscoelastic properties of the material on the beam's
responses.

& 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Fractional calculus and fractional differential equations have more and more frequently been used in modern viscoe-
lasticity problems. Literature surveys, together with bibliographical information, are now available in [1,2]. In particular, an
overview of new trends and the results of applications of fractional calculus in dynamical problems are provided in [2]. The
dynamic analysis of structures with viscoelastic layers or ones made of viscoelastic materials is the subject of numerous
papers [1,3–19]. Viscoelastic materials are described using different rheological models, for instance, models with fractional
derivatives [1,3,5,10,11,19] are used.

Linear dynamic analysis of fractionally damped beams and bars rods is the subject of paper [20], where the multiple
scales method is used to develop the amplitude equations and determine the stability boundaries in the case of parametric
excitations.

In paper [5], the dynamics of sandwich beams is analysed in the time domain and the fractional Zener model is used to
describe the properties of the viscoelastic layer. The steady-state nonlinear vibrations of viscoelastic arches are investigated
by Leung et al. [3]. The arches’ material was modelled by the Kelvin-Voigt model with fractional derivatives and the region
of main resonances is analyzed in particular. A single mode is used to generate nonlinear differential equations with
fractional derivatives. The so-called residue harmonic balance method is used to obtain solutions of the first and higher
orders to the above-mentioned equation. Multiple bifurcation solutions, the jump phenomenon and the saddle-node are
observed. The nonlinear free and forced vibration of sandwich plates with the incompressible viscoelastic core is

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/jsvi

Journal of Sound and Vibration

http://dx.doi.org/10.1016/j.jsv.2017.03.032
0022-460X/& 2017 Elsevier Ltd. All rights reserved.

n Corresponding author.
E-mail addresses: roman.lewandowski@put.poznan.pl (R. Lewandowski), przemyslaw.wielentejczyk@put.poznan.pl (P. Wielentejczyk).

Journal of Sound and Vibration 399 (2017) 228–243

www.sciencedirect.com/science/journal/0022460X
www.elsevier.com/locate/jsvi
http://dx.doi.org/10.1016/j.jsv.2017.03.032
http://dx.doi.org/10.1016/j.jsv.2017.03.032
http://dx.doi.org/10.1016/j.jsv.2017.03.032
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jsv.2017.03.032&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jsv.2017.03.032&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jsv.2017.03.032&domain=pdf
mailto:roman.lewandowski@put.poznan.pl
mailto:przemyslaw.wielentejczyk@put.poznan.pl
http://dx.doi.org/10.1016/j.jsv.2017.03.032


investigated in [7]. The standard linear model was used to describe the viscoelastic part of the plate. The method of multiple
scales is applied to solve the equations of motion and to analyze the plate's behaviour in the primary resonance region. The
rheological models with fractional derivatives were used in [10,11] to describe the viscoelastic dampers and viscoelastic
layers. The dynamic characteristics of the frame structures or multilayered beams are investigated and the results obtained
for dampers modelled in different ways are compared in [10]. The standard Biot model was used in [18] to analyze the
viscoelastic structures.

In a series of papers [4,6,21,22], the nonlinear steady-state vibration of sandwich beams was also analyzed by Daya et al.
In those papers, the harmonic balance method is used to obtain one-harmonic steady-state solutions to the problem under
consideration. The nonlinear vibration of beams made of the viscoelastic Kelvin-Voigt material is also investigated in
[23,24]. The Prony–Dirichlet series and the multiple scales method are used in [13] to study both the linear and nonlinear
vibration of composite plates. Asymptotic methods are often used in the dynamic analysis of beams and plates. The current
description of these methods and numerous examples are reported in monograph [25].

The nonlinear vibration of fractionally damped viscoelastic composite beams is considered in [26] where a single mode
solution is obtained analytically using the multiple-time scales method. A constitutive equation, similar to the one used in
the Kelvin model, is adopted. Both the free and steady-state vibrations are considered. The dynamical analysis of nonlinear
viscoelastic plates under subsonic flow and external loads are considered in [27]. The multiple scales method is used to solve
the equation of motion. The response curves for primary as well as super- and subharmonic resonances are determined.

The linear equation of motion of the Euler-Bernoulli beam made of a viscoelastic material, described using the fractional
derivatives, was analyzed in detail by Di Paola et al. [28]. It was assumed that the stress-strain relationship contains the
Caputo's fractional derivative whereas the inverted relationship contains the Riemann–Liouville fractional integral. The
parametric vibration of an axially moving beam made of a fractional-order Kelvin material is considered in [29]. In parti-
cular, the parametric resonance together with stability of motion was investigated.

The steady-state vibration of a one-degree-of-freedom system, described by the Duffing nonlinear equation with frac-
tional derivatives, was investigated in [30–33]. The averaging method or the harmonic balance method was used to de-
termine the solution.

In the present paper, the problem of nonlinear, steady-state vibration of viscoelastic beams is considered. It is assumed
that the beams’ viscoelastic material can accurately be modelled using the Zener model. The constitutive equation of the
model under consideration contains fractional derivatives. As stated in [34], the Zener model is the simplest one and it
preserves all the main properties of real viscoelastic materials. However, the constitutive equation of the model contains
derivatives of both stress and strain. This produces some additional difficulties in the context of nonlinear dynamic pro-
blems, in comparison with the Kelvin model (used in [3]) or with the model suggested by Di Paola et al. [28]. Beams with
immovable ends are considered and the von Karman theory is used to describe the effects of geometrical nonlinearity. The
steady state vibration of the beams are described using the one-harmonic function of time. The harmonic balance method
together with the finite element method is used to derive the amplitude equations which are solved by the continuation
method. Moreover, the results of representative calculations are described and briefly discussed.

The paper consists of eight sections. Section 2 summarizes the main equations which describe the behaviour of the beam
undergoing large amplitude vibration, whereas Section 3 describes the assumed steady-state solution. The discrete form of
the amplitude equations is derived in Section 4 and the continuation procedure used to determine the response curves is
briefly presented in Section 5. Stability of the steady-state solution is examined in Section 6. The results of calculation are
discussed in Section 7. The concluding remarks are presented in Section 8. Some useful formulae are given in Appendix A.

2. Description of the beam

According to the Euler-Bernoulli theory of beams, the horizontal displacement ( )u x z t, ,x and the transversal displace-
ment ( )u x z t, ,z of a freely chosen point of the beam, of which the coordinates are (x z, ), can be written in terms of the
horizontal ( )u x t, and transversal ( )w x t, displacements of a neutral axis as follows:

( ) = ( ) − ( ) ( ) ≡ ( ) ( )u x z t u x t zw x t u x z t w x t, , , , , , , , . 1x x z,

where ( ) = ∂ ∂w x t w x, /x, and t is time.
The generalized strain field is described as follows:

ε ε κ κ( ) = ( ) − ( ) ( ) = − ( ) ( )x z t x t z x t x t w x t, , , , , , , , , 2x xx

where ε ( )x z t, ,x is the strain at an arbitrary point of a cross-section, ε( )x t, is the linear strain of the neutral beam axis and
κ( )x t, is the beam's curvature.

According to the von Karman theory, the linear strain of neutral fibre is given by

ε( ) = ( ) + ( ) ( )x t u x t w x t, , ,
1
2

, , . 3x x
2

Well known equations of motion of the beam, resulting from equilibrium conditions, are:
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