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a b s t r a c t

This work provides an in-depth investigation on advantages of a recently developed, new
global spatial discretization method over the assumed modes method, and a clear de-
scription of the procedure and validity of the new method and its feasibility for arbitrary
boundary conditions. A general formulation of the new spatial discretization method is
given for second- and fourth-order continuous systems, whose displacements are divided
into internal terms and boundary-induced terms, and two examples that consider the
longitudinal vibration of a rod and the transverse vibration of a tensioned Euler-Bernoulli
beam are used to demonstrate the new spatial discretization method. In the two ex-
amples, natural frequencies, mode shapes, harmonic steady-state responses, and transient
responses of the systems are calculated using the new spatial discretization method and
the assumed modes method, and results are compared with those from exact analyses.
Convergence of the new spatial discretization method is investigated using different sets
of trial functions for internal and boundary-induced terms. While the new spatial dis-
cretization method has additional degrees of freedom at boundaries of a continuous
system compared with other global spatial discretization methods, it has the following
advantages: (1) compared with the assumed modes method, the new method gives better
results in calculating eigensolutions and dynamic responses of the system, and allows
more terms to be retained in a trial function expansion due to the slowly growing con-
dition number of the mass matrix of the system; and (2) compared with the exact ei-
genfunction expansion method, the new method can use sinusoidal functions as trial
functions for the internal term rather than complicated eigenfunctions of the system in
the expansion solution.

& 2017 Published by Elsevier Ltd.

1. Introduction

A vibrating system is usually studied using either a discrete or continuous system model [1]. A discrete or lumped-
parameter system model has a finite number of degrees of freedom and a set of ordinary differential equations (ODEs) as its
governing equations. A continuous or distributed-parameter system model has an infinite number of degrees of freedom
and one or more partial differential equations (PDEs) as its governing equations, whose independent variables include
spatial and temporal variables. Dynamic response of a discrete system is directly calculated using an ODE solver, and only
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displacements of the system and their time derivatives are obtained. Proper spatial discretization methods are needed for a
continuous system so that its governing PDEs can be converted to a set of ODEs and dealt with using an ODE solver. Not only
displacements of the system, but also their spatial derivatives, are of interest, since they are directly related to internal forces
and moments of the system [2,3]. There are in general two classes of spatial discretization methods: local and global
methods. The local methods, such as finite difference [4] and finite element [5] methods, discretize a spatial domain into
multiple smaller domains, and evaluate governing equations at connecting points between them. The finite element method
can be combined with the transfer-matrix method to deal with wave propagation in a periodic structure [6]. The global
methods, such as Trefftz [7], assumed modes, and Galerkin's methods, discretize a spatial domain using a set of trial
functions. Trefftz method approximates a solution by a superposition of trial functions that satisfy a governing equation,
with its unknown coefficients determined to satisfy boundary conditions [7]. The wave-based method is an indirect Trefftz
method that can be used to calculate natural frequencies and mode shapes of a system [8]. The assumed modes method uses
admissible functions that satisfy only geometric boundary conditions of a system as its trial functions, and Galerkin's
method uses comparison functions that satisfy both geometric and natural boundary conditions as its trial functions [1,9].
Exact analysis can be performed on a system using the eigenfunction expansion method with trial functions in Galerkin's
method being eigenfunctions of the system. However, Galerkin's method and exact analysis are not always feasible for
systems with complicated boundary conditions, since comparison functions and eigenfunctions that satisfy these boundary
conditions cannot be easily determined. Unlike assumed modes and Galerkin's methods that can be used to determine
dynamic response of a continuous system, Rayleigh-Ritz method is based on stationarity of Rayleigh's quotient and deals
with the eigenvalue problem of the system; it cannot be used to determine its dynamic response.

A new global spatial discretization method that can ensure all internal and boundary conditions of one-dimensional
continuous systems are satisfied is recently developed [2] and used to calculate displacements and their spatial derivatives
of moving elevator cable-car systems, the latter of which are related to tensions, bending moments, and shear forces of the
cables [3]. The new spatial discretization method discretizes a continuous system with complicated boundary conditions by
separating a displacement of the system into an internal term and a boundary-induced term [2,3], where the internal term
satisfies certain prescribed simple homogeneous boundary conditions and the boundary-induced term accounts for cor-
responding boundary conditions that are not satisfied by the internal term using additional degrees of freedom at
boundaries of the system, whose number does not exceed the number of boundary conditions of the system. The metho-
dology is applicable to both linear and nonlinear systems and uniform convergence of solutions is shown in Ref. [2]. The new

Nomenclature

α β γ, , prescribed coefficients of a partial differential
equation

x independent spatial variable
t independent temporal variable
u dependent variable
x x,1 2 boundary locations
λ eigenvalue
λj j-th eigenvalue
Φj j-th eigenfunction
ϕj j-th trial function
qj j-th generalized coordinate
ũ internal term
û boundary-induced term
φj j-th trial function for the internal term
pj j-th generalized coordinate for the internal

term
θi i-th interpolation function for boundary de-

grees of freedom
ei i-th boundary degree of freedom
N number of truncated terms
K number of additional boundary degrees of

freedom
l length of a continuous system
ρ linear density of a continuous system
EA axial stiffness of a second-order system
m mass of a lumped sub-system

k stiffness of a lumped sub-system
F external force
Mr mass matrix of a second-order system
Kr stiffness matrix of a second-order system
ϕ vector of trial functions
Fr force vector of a second-order system
ω natural frequency
ωj j-th natural frequency
Φ vector of eigenfunctions
F0 amplitude of the external harmonic force
M0 amplitude of the external harmonic moment
ωF frequency of the external harmonic force and

moment
A0 amplitude of the steady-state displacement at

x¼ l
q vector of generalized coordinates
P tension in a continuous system
EI bending stiffness of a fourth-order system
Im rotatory inertia of a lumped sub-system
M external moment
Mtb mass matrix of a fourth-order system
Ktb stiffness matrix of a fourth-order system
Ftb force vector of a fourth-order system
I J, numbers of spatial and temporal nodes in the

finite difference method
ξ η, spatial and temporal steps in the finite differ-

ence method
c damping coefficient
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