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a b s t r a c t

A novel idea that applies the multiple scale analysis to a discretized decoupled system of
gyroscopic continua is introduced and an axial moving string is treated as an example.
First, the invariant manifold method is applied to the discretized ordinary differential
equations of the axially moving string. Complex gyroscopic mode functions that agree
well with true analytical results are obtained. The gyroscopic modes are subsequently
used for the discretized ordinary differential equations with gyroscopic and nonlinear
coupling terms that yield a gyroscopically decoupled system. Further the method of
multiple scales is used to obtain the equations at a slow scale. This novel procedure is
compared to solutions obtained by directly applying the classical multiple scale analysis to
the gyroscopically coupled system without decoupling. The modal decoupled system
analysis yields better frequency with comparing to the classic method. The proposed
methodology provides a novel alternative for nonlinear dynamic analysis of gyroscopic
continua.

& 2017 Elsevier Ltd All rights reserved.

1. Introduction

There exist wide applications of axially moving strings in many mechanical engineering systems such as serpentine belts,
aerial cables, power transmission belts, magnetic tapes, textile fibers, etc. In contemporary engineering fields, the transverse
vibration analysis of axially moving strings is generally known as a challenging work for safe design of a variety of machines
and structural systems. There is an abundance of research papers on the analysis of transverse vibrations of axially moving
string. The earlier investigations have been reviewed by Chen [1]. Recent developments of parametric excited and nonlinear
vibrations of axially moving string may be referred to Kesimli et al. [2], Malookani, van Horssen [3] and the references
therein.

Axially moving string is one of the simplest representatives of distributed gyroscopic systems. This system is of great
interest to researchers due to its theoretical and practical importance in various industries. The distributed gyroscopic
systems or gyroscopic continua involve complex vibration modes which lead to ‘galloping nodes’ during modal motions
from experimental viewpoint [4,5]. For a Galerkin truncated system, the truncated finite dimension ordinary differential
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equations are coupled by the gyroscopic effects. Through discretization, the continuous system is projected to some finite
orders of trial functions. The generalized coordinates for the trial functions are coupled by the gyroscopic effects and the
functions can be treated further as linear or nonlinear systems. The static mode functions are usually adopted for axially
moving materials and the efficiency of the Galerkin method has been verified [6–9] in free and forced vibration studies
especially for dynamics in the sub-critical range. Recently, Malookani and van Horssen [10] demonstrated that the Galerkin
method was invalid for long timescales when treating the parametric resonance of axially moving strings. The conclusion
was an unusual case comparing with the classical results.

Due to gyroscopic effect caused by axially moving speed, the modal transverse vibration is not in an ‘in-unison’ sense, ie.
the displacements of the whole string reach maximum values at the same time and go through equilibrium points at the
same time. Rosenberg [11] defined ‘vibration in-unison’ as nonlinear normal modes which expanded the modal motions
from linear undamped vibration to nonlinear damped vibration for non-gyroscopic systems. By introducing an invariant
manifold, Shaw and Pierre [12,13] and Boivin et al. [14,15] expanded the nonlinear normal modes further which described
the modal motions of the gyroscopic systems. Because the gyroscopic continuous or discretized systems in modal motions
do not vibrate in unison, Hill et al. [16] introduced the term ‘out-of-unison vibration’ instead of normal modes because the
gyroscopic modes are not normal in the classic point of view.

In this study, the gyroscopic complex modes based on the Galerkin truncated system is derived by the concept of in-
variant manifold introduced by Shaw and Pierre [12,13]. This discretization method is compared with the original con-
tinuous system to validate its efficiency. Further, the gyroscopic modes are applied to the nonlinear truncated system to
obtain a decoupled system. The method of multiple scales is subsequently applied to investigate the 1:3 internal resonance
based on the gyroscopic decoupled nonlinear system. The classic procedure is apply the multiple scale method directly to
the gyroscopic coupled system. The results of the multiple scale analysis to both classical, gyroscopic coupled system and
the decoupled system introduced in this paper are further compared and discussed with a numerical example. The novel
procedure of multiple scale analysis for decoupled systems developed here and applied to axially moving strings can also be
extended to other gyroscopic continua.

2. Governing equations and gyroscopic modal analysis

A string with length L and axial tension P0 moves along the axis with axial velocity V between two fixed ends is con-
sidered. The partial differential equation that governs the nonlinear transverse vibration of an axially moving elastic string
can be expressed as [1,17]
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where W is the transverse defection of the axially moving string dependent on both the spatial variable X and temporal
variable T, ρ is the linear density, and E is the Young's modulus of the string material. In Eq. (1), the comma-subscript
notation denotes partial differentiation with respect to the variables after the comma. The following dimensionless variables
and parameters are introduced
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The governing partial differential equation in dimensionless terms is
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and the boundary conditions are
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Substituting w(x, t)¼φ(x)eiωt into a linearized system of Eq. (3) yields a second order ordinary differential equation with
respect to x. Applying the boundary conditions (4), the complex modes and natural frequencies of the continuous, linearized
system can be obtained as [4,18,19]

( )φ π ω π γ( ) = = ( − ) = … ( )πγx C k x e k ksin , 1 , 1, 2, 3, 5ik x 2

The mode function in Eq. (5) is a complex function and it implies a traveling wave. For vanishing velocity, ie. γ ¼ 0, the
mode function degenerates to a static string.

The Galerkin truncation method and subsequently the invariant manifold method are applied to derive a discretized
system. The complex modes obtained will be compared with the exact solutions (5) in order to verify the efficiency of the
Galerkin method.

The solutions to the partial differential Eq. (3) can be expressed as
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